Bio21 - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 38
  • Item
    No Preview Available
    Remodeling of Carbon Metabolism during Sulfoglycolysis in Escherichia coli
    Mui, JW-Y ; De Souza, DP ; Saunders, EC ; McConville, MJ ; Williams, SJ ; Atomi, H (AMER SOC MICROBIOLOGY, 2023-02-28)
    Sulfoquinovose (SQ) is a major metabolite in the global sulfur cycle produced by nearly all photosynthetic organisms. One of the major pathways involved in the catabolism of SQ in bacteria such as Escherichia coli is a variant of the glycolytic Embden-Meyerhof-Parnas (EMP) pathway termed the sulfoglycolytic EMP (sulfo-EMP) pathway, which leads to the consumption of three of the six carbons of SQ and the excretion of 2,3-dihydroxypropanesulfonate (DHPS). Comparative metabolite profiling of aerobically glucose (Glc)-grown and SQ-grown E. coli cells was undertaken to identify the metabolic consequences of the switch from glycolysis to sulfoglycolysis. Sulfoglycolysis was associated with the diversion of triose phosphates (triose-P) to synthesize sugar phosphates (gluconeogenesis) and an unexpected accumulation of trehalose and glycogen storage carbohydrates. Sulfoglycolysis was also associated with global changes in central carbon metabolism, as indicated by the changes in the levels of intermediates in the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway (PPP), polyamine metabolism, pyrimidine metabolism, and many amino acid metabolic pathways. Upon entry into stationary phase and the depletion of SQ, E. coli cells utilize their glycogen, indicating a reversal of metabolic fluxes to allow glycolytic metabolism. IMPORTANCE The sulfosugar sulfoquinovose is estimated to be produced on a scale of 10 billion metric tons per annum, making it a major organosulfur species in the biosulfur cycle. The microbial degradation of sulfoquinovose through sulfoglycolysis allows the utilization of its carbon content and contributes to the biomineralization of its sulfur. However, the metabolic consequences of microbial growth on sulfoquinovose are unclear. We use metabolomics to identify the metabolic adaptations that Escherichia coli undergoes when grown on sulfoquinovose versus glucose. This revealed the increased flux into storage carbohydrates through gluconeogenesis and the reduced flux of carbon into the TCA cycle and downstream metabolism. These changes are relieved upon entry into stationary phase and reversion to glycolytic metabolism. This work provides new insights into the metabolic consequences of microbial growth on an abundant sulfosugar.
  • Item
    Thumbnail Image
    In-cell DNP NMR reveals multiple targeting effect of antimicrobial peptide
    Separovic, F ; Hofferek, V ; Duff, AP ; McConville, MJ ; Sani, M-A (ELSEVIER, 2022)
    Dynamic nuclear polarization NMR spectroscopy was used to investigate the effect of the antimicrobial peptide (AMP) maculatin 1.1 on E. coli cells. The enhanced 15N NMR signals from nucleic acids, proteins and lipids identified a number of unanticipated physiological responses to peptide stress, revealing that membrane-active AMPs can have a multi-target impact on E. coli cells. DNP-enhanced 15N-observed 31P-dephased REDOR NMR allowed monitoring how Mac1 induced DNA condensation and prevented intermolecular salt bridges between the main E. coli lipid phosphatidylethanolamine (PE) molecules. The latter was supported by similar results obtained using E. coli PE lipid systems. Overall, the ability to monitor the action of antimicrobial peptides in situ will provide greater insight into their mode of action.
  • Item
    Thumbnail Image
    Longitudinal spatial mapping of lipid metabolites reveals pre-symptomatic changes in the hippocampi of Huntington?s disease transgenic mice
    Farzana, F ; McConville, MJ ; Renoir, T ; Li, S ; Nie, S ; Tran, H ; Hannan, AJ ; Hatters, DM ; Boughton, BA (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2023-01)
    In Huntington's disease (HD), a key pathological feature includes the development of inclusion-bodies of fragments of the mutant huntingtin protein in the neurons of the striatum and hippocampus. To examine the molecular changes associated with inclusion-body formation, we applied MALDI-mass spectrometry imaging and deuterium pulse labelling to determine lipid levels and synthesis rates in the hippocampus of a transgenic mouse model of HD (R6/1 line). The R6/1 HD mice lacked inclusions in the hippocampus at 6 weeks of age (pre-symptomatic), whereas inclusions were pervasive by 16 weeks of age (symptomatic). Hippocampal subfields (CA1, CA3 and DG), which formed the highest density of inclusion formation in the mouse brain showed a reduction in the relative abundance of neuron-enriched lipids that have roles in neurotransmission, synaptic plasticity, neurogenesis, and ER-stress protection. Lipids involved in the adaptive response to ER stress (phosphatidylinositol, phosphatidic acid, and ganglioside classes) displayed increased rates of synthesis in HD mice relative to WT mice at all the ages examined, including prior to the formation of the inclusion bodies. Our findings, therefore, support a role for ER stress occurring pre-symptomatically and potentially contributing to pathological mechanisms underlying HD.
  • Item
    Thumbnail Image
    Type I interferon antagonism of the JMJD3-IRF4 pathway modulates macrophage activation and polarization
    Lee, KM-C ; Achuthan, AA ; De Souza, DP ; Lupancu, TJ ; Binger, KJ ; Lee, MKS ; Xu, Y ; McConville, MJ ; de Weerd, NA ; Dragoljevic, D ; Hertzog, PJ ; Murphy, AJ ; Hamilton, JA ; Fleetwood, AJ (CELL PRESS, 2022-04-19)
    Metabolic adaptations can directly influence the scope and scale of macrophage activation and polarization. Here we explore the impact of type I interferon (IFNβ) on macrophage metabolism and its broader impact on cytokine signaling pathways. We find that IFNβ simultaneously increased the expression of immune-responsive gene 1 and itaconate production while inhibiting isocitrate dehydrogenase activity and restricting α-ketoglutarate accumulation. IFNβ also increased the flux of glutamine-derived carbon into the tricarboxylic acid cycle to boost succinate levels. Combined, we identify that IFNβ controls the cellular α-ketoglutarate/succinate ratio. We show that by lowering the α-ketoglutarate/succinate ratio, IFNβ potently blocks the JMJD3-IRF4-dependent pathway in GM-CSF and IL-4 activated macrophages. The suppressive effects of IFNβ on JMJD3-IRF4-dependent responses, including M2 polarization and GM-CSF-induced inflammatory pain, were reversed by supplementation with α-ketoglutarate. These results reveal that IFNβ modulates macrophage activation and polarization through control of the cellular α-ketoglutarate/succinate ratio.
  • Item
    Thumbnail Image
    Identification of novel lipid modifications and intermembrane dynamics in Corynebacterium glutamicum using high-resolution mass spectrometry
    Klatt, S ; Brammananth, R ; O'Callaghan, S ; Kouremenos, KA ; Tull, D ; Crellin, PK ; Coppel, RL ; McConville, MJ (ELSEVIER, 2018-07)
    The complex cell envelopes of Corynebacterineae contribute to the virulence of pathogenic species (such as Mycobacterium tuberculosis and Corynebacterium diphtheriae) and capacity of nonpathogenic species (such as Corynebacterium glutamicum) to grow in diverse niches. The Corynebacterineae cell envelope comprises an asymmetric outer membrane that overlays the arabinogalactan-peptidoglycan complex and the inner cell membrane. Dissection of the lipid composition of the inner and outer membrane fractions is important for understanding the biogenesis of this multilaminate wall structure. Here, we have undertaken the first high-resolution analysis of C. glutamicum inner and outer membrane lipids. We identified 28 lipid (sub)classes (>233 molecular species), including new subclasses of acylated/acetylated trehalose mono/dicorynomycolic acids, using high-resolution LC/MS/MS coupled with mass spectral library searches in MS-DIAL. All lipid subclasses exhibited polarized distributions across the inner and outer membrane fractions generated by differential solvent extraction. Strikingly, deletion of the TmaT protein, which is required for transport of trehalose corynomycolates across the inner membrane, led to the accumulation of triacylglycerols in the inner membrane and to suppressed synthesis of phosphatidylglycerol and alanylated lipids. These analyses indicate unanticipated connectivity in the synthesis and/or transport of different lipid classes in C. glutamicum.
  • Item
    Thumbnail Image
    Analysis of Ca2+ mediated signaling regulating Toxoplasma infectivity reveals complex relationships between key molecules
    Stewart, RJ ; Whitehead, L ; Nijagal, B ; Sleebs, BE ; Lessene, G ; McConville, MJ ; Rogers, KL ; Tonkin, CJ (WILEY, 2017-04)
    Host cell invasion, exit and parasite dissemination is critical to the pathogenesis of apicomplexan parasites such as Toxoplasma gondii and Plasmodium spp. These processes are regulated by intracellular Ca2+ signaling although the temporal dynamics of Ca2+ fluxes and down-stream second messenger pathways are poorly understood. Here, we use a genetically encoded biosensor, GFP-Calmodulin-M13-6 (GCaMP6), to capture Ca2+ flux in live Toxoplasma and investigate the role of Ca2+ signaling in egress and motility. Our analysis determines how environmental cues and signal activation influence intracellular Ca2+ flux, allowing placement of effector molecules within this pathway. Importantly, we have identified key interrelationships between cGMP and Ca2+ signaling that are required for activation of egress and motility. Furthermore, we extend this analysis to show that the Ca2+ Dependent Protein Kinases-TgCDPK1 and TgCDPK3-play a role in signal quenching before egress. This work highlights the interrelationships of second messenger pathways of Toxoplasma in space and time, which is likely required for pathogenesis of all apicomplexan species.
  • Item
    Thumbnail Image
    A Family of Dual-Activity Glycosyltransferase-Phosphorylases Mediates Mannogen Turnover and Virulence in Leishmania Parasites
    Sernee, MF ; Ralton, JE ; Nero, TL ; Sobala, LF ; Kloehn, J ; Vieira-Lara, MA ; Cobbold, SA ; Stanton, L ; Pires, DEV ; Hanssen, E ; Males, A ; Ward, T ; Bastidas, LM ; van der Peet, PL ; Parker, MW ; Ascher, DB ; Williams, SJ ; Davies, GJ ; McConville, MJ (CELL PRESS, 2019-09-11)
    Parasitic protists belonging to the genus Leishmania synthesize the non-canonical carbohydrate reserve, mannogen, which is composed of β-1,2-mannan oligosaccharides. Here, we identify a class of dual-activity mannosyltransferase/phosphorylases (MTPs) that catalyze both the sugar nucleotide-dependent biosynthesis and phosphorolytic turnover of mannogen. Structural and phylogenic analysis shows that while the MTPs are structurally related to bacterial mannan phosphorylases, they constitute a distinct family of glycosyltransferases (GT108) that have likely been acquired by horizontal gene transfer from gram-positive bacteria. The seven MTPs catalyze the constitutive synthesis and turnover of mannogen. This metabolic rheostat protects obligate intracellular parasite stages from nutrient excess, and is essential for thermotolerance and parasite infectivity in the mammalian host. Our results suggest that the acquisition and expansion of the MTP family in Leishmania increased the metabolic flexibility of these protists and contributed to their capacity to colonize new host niches.
  • Item
    Thumbnail Image
    Lipidomic Profiling of Adipose Tissue Reveals an Inflammatory Signature in Cancer-Related and Primary Lymphedema
    Sedger, LM ; Tull, DL ; McConville, MJ ; De Souza, DP ; Rupasinghe, TWT ; Williams, SJ ; Dayalan, S ; Lanzer, D ; Mackie, H ; Lam, TC ; Boyages, J ; Maya-Monteiro, CM (PUBLIC LIBRARY SCIENCE, 2016-05-16)
    Cancer-related and primary lymphedema (LE) are associated with the production of adipose tissue (AT). Nothing is known, however, about the lipid-based molecules that comprise LE AT. We therefore analyzed lipid molecules in lipoaspirates and serum obtained from LE patients, and compared them to lipoaspirates from cosmetic surgery patients and healthy control cohort serum. LE patient serum analysis demonstrated that triglycerides, HDL- and LDL-cholesterol and lipid transport molecules remained within the normal range, with no alterations in individual fatty acids. The lipidomic analysis also identified 275 lipid-based molecules, including triacylglycerides, diacylglycerides, fatty acids and phospholipids in AT oil and fat. Although the majority of lipid molecules were present in a similar abundance in LE and non-LE samples, there were several small changes: increased C20:5-containing triacylglycerides, reduced C10:0 caprinic and C24:1 nervonic acids. LE AT oil also contained a signature of increased cyclopropane-type fatty acids and inflammatory mediators arachidonic acid and ceramides. Interestingly C20:5 and C22:6 omega-3-type lipids are increased in LE AT, correlating with LE years. Hence, LE AT has a normal lipid profile containing a signature of inflammation and omega-3-lipids. It remains unclear, however, whether these differences reflect a small-scale global metabolic disturbance or effects within localised inflammatory foci.
  • Item
    Thumbnail Image
    Leishmania carbon metabolism in the macrophage phagolysosome- feast or famine?
    McConville, MJ ; Saunders, EC ; Kloehn, J ; Dagley, MJ (F1000 Research Ltd, 2015)
    A number of medically important microbial pathogens target and proliferate within macrophages and other phagocytic cells in their mammalian hosts. While the majority of these pathogens replicate within the host cell cytosol or non-hydrolytic vacuolar compartments, a few, including protists belonging to the genus Leishmania, proliferate long-term within mature lysosome compartments.  How these parasites achieve this feat remains poorly defined. In this review, we highlight recent studies that suggest that Leishmania virulence is intimately linked to programmed changes in the growth rate and carbon metabolism of the obligate intra-macrophage stages. We propose that activation of a slow growth and a stringent metabolic response confers resistance to multiple stresses (oxidative, temperature, pH), as well as both nutrient limitation and nutrient excess within this niche. These studies highlight the importance of metabolic processes as key virulence determinants in Leishmania.
  • Item
    Thumbnail Image
    An Efficient Single Phase Method for the Extraction of Plasma Lipids
    Alshehry, ZH ; Barlow, CK ; Weir, JM ; Zhou, Y ; McConville, MJ ; Meikle, PJ (MDPI AG, 2015-06)
    Lipidomic approaches are now widely used to investigate the relationship between lipid metabolism, health and disease. Large-scale lipidomics studies typically aim to quantify hundreds to thousands of lipid molecular species in a large number of samples. Consequently, high throughput methodology that can efficiently extract a wide range of lipids from biological samples is required. Current methods often rely on extraction in chloroform:methanol with or without two phase partitioning or other solvents, which are often incompatible with liquid chromatography electrospray ionization-tandem mass spectrometry (LC ESI-MS/MS). Here, we present a fast, simple extraction method that is suitable for high throughput LC ESI-MS/MS. Plasma (10 μL) was mixed with 100 μL 1-butanol:methanol (1:1 v/v) containing internal standards resulting in efficient extraction of all major lipid classes (including sterols, glycerolipids, glycerophospholipids and sphingolipids). Lipids were quantified using positive-ion mode LC ESI-MS/MS. The method showed high recovery (>90%) and reproducibility (%CV < 20%). It showed a strong correlation of all lipid measures with an established chloroform:methanol extraction method (R2 = 0.976). This method uses non-halogenated solvents, requires no drying or reconstitution steps and is suitable for large-scale LC ESI-MS/MS-based lipidomic analyses in research and clinical laboratories.