Bio21 - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Repurposing the mitotic machinery to drive cellular elongation and chromatin reorganisation in Plasmodium falciparum gametocytes
    Li, J ; Shami, GJ ; Cho, E ; Liu, B ; Hanssen, E ; Dixon, MWA ; Tilley, L (NATURE PORTFOLIO, 2022-08-27)
    The sexual stage gametocytes of the malaria parasite, Plasmodium falciparum, adopt a falciform (crescent) shape driven by the assembly of a network of microtubules anchored to a cisternal inner membrane complex (IMC). Using 3D electron microscopy, we show that a non-mitotic microtubule organizing center (MTOC), embedded in the parasite's nuclear membrane, orients the endoplasmic reticulum and the nascent IMC and seeds cytoplasmic microtubules. A bundle of microtubules extends into the nuclear lumen, elongating the nuclear envelope and capturing the chromatin. Classical mitotic machinery components, including centriolar plaque proteins, Pfcentrin-1 and -4, microtubule-associated protein, End-binding protein-1, kinetochore protein, PfNDC80 and centromere-associated protein, PfCENH3, are involved in the nuclear microtubule assembly/disassembly process. Depolymerisation of the microtubules using trifluralin prevents elongation and disrupts the chromatin, centromere and kinetochore organisation. We show that the unusual non-mitotic hemispindle plays a central role in chromatin organisation, IMC positioning and subpellicular microtubule formation in gametocytes.
  • Item
    Thumbnail Image
    Multimodal analysis of Plasmodium knowlesi-infected erythrocytes reveals large invaginations, swelling of the host cell, and rheological defects
    Liu, B ; Blanch, AJ ; Namvar, A ; Carmo, O ; Tiash, S ; Andrew, D ; Hanssen, E ; Rajagopal, V ; Dixon, MWA ; Tilley, L (WILEY-HINDAWI, 2019-05)
    The simian parasite Plasmodium knowlesi causes severe and fatal malaria infections in humans, but the process of host cell remodelling that underpins the pathology of this zoonotic parasite is only poorly understood. We have used serial block-face scanning electron microscopy to explore the topography of P. knowlesi-infected red blood cells (RBCs) at different stages of asexual development. The parasite elaborates large flattened cisternae (Sinton Mulligan's clefts) and tubular vesicles in the host cell cytoplasm, as well as parasitophorous vacuole membrane bulges and blebs, and caveolar structures at the RBC membrane. Large invaginations of host RBC cytoplasm are formed early in development, both from classical cytostomal structures and from larger stabilised pores. Although degradation of haemoglobin is observed in multiple disconnected digestive vacuoles, the persistence of large invaginations during development suggests inefficient consumption of the host cell cytoplasm. The parasite eventually occupies ~40% of the host RBC volume, inducing a 20% increase in volume of the host RBC and an 11% decrease in the surface area to volume ratio, which collectively decreases the ability of the P. knowlesi-infected RBCs to enter small capillaries of a human erythrocyte microchannel analyser. Ektacytometry reveals a markedly decreased deformability, whereas correlative light microscopy/scanning electron microscopy and python-based skeleton analysis (Skan) reveal modifications to the surface of infected RBCs that underpin these physical changes. We show that P. knowlesi-infected RBCs are refractory to treatment with sorbitol lysis but are hypersensitive to hypotonic lysis. The observed physical changes in the host RBCs may underpin the pathology observed in patients infected with P. knowlesi.
  • Item
    Thumbnail Image
    Disrupting assembly of the inner membrane complex blocks Plasmodium falciparum sexual stage development
    Schneider, MP ; Liu, B ; Glock, P ; Suttie, A ; McHugh, E ; Andrew, D ; Batinovic, S ; Williamson, N ; Hanssen, E ; McMillan, P ; Hliscs, M ; Tilley, L ; Dixon, MWA ; Gilberger, TW (PUBLIC LIBRARY SCIENCE, 2017-10)
    Transmission of malaria parasites relies on the formation of a specialized blood form called the gametocyte. Gametocytes of the human pathogen, Plasmodium falciparum, adopt a crescent shape. Their dramatic morphogenesis is driven by the assembly of a network of microtubules and an underpinning inner membrane complex (IMC). Using super-resolution optical and electron microscopies we define the ultrastructure of the IMC at different stages of gametocyte development. We characterize two new proteins of the gametocyte IMC, called PhIL1 and PIP1. Genetic disruption of PhIL1 or PIP1 ablates elongation and prevents formation of transmission-ready mature gametocytes. The maturation defect is accompanied by failure to form an enveloping IMC and a marked swelling of the digestive vacuole, suggesting PhIL1 and PIP1 are required for correct membrane trafficking. Using immunoprecipitation and mass spectrometry we reveal that PhIL1 interacts with known and new components of the gametocyte IMC.
  • Item
    Thumbnail Image
    The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites
    Charnaud, SC ; Dixon, MWA ; Nie, CQ ; Chappell, L ; Sanders, PR ; Nebl, T ; Hanssen, E ; Berriman, M ; Chan, J-A ; Blanch, AJ ; Beeson, JG ; Rayner, JC ; Przyborski, JM ; Tilley, L ; Crabb, BS ; Gilson, PR ; Spielmann, T (PUBLIC LIBRARY SCIENCE, 2017-07-21)
    Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE) in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a large number of deaths each year and is a consequence of exported parasite proteins, some of which modify the erythrocyte cytoskeleton while others such as PfEMP1 project onto the erythrocyte surface where they bind to endothelial cells. Here we investigate the effects of knocking out an exported Hsp70-type chaperone termed Hsp70-x that is present in P. falciparum but not P. vivax. Although the growth of Δhsp70-x parasites was unaffected, the export of PfEMP1 cytoadherence proteins was delayed and Δhsp70-x IE had reduced adhesion. The Δhsp70-x IE were also more rigid than wild-type controls indicating changes in the way the parasites modified their host erythrocyte. To investigate the cause of this, transcriptional and translational changes in exported and chaperone proteins were monitored and some changes were observed. We propose that PfHsp70-x is not essential for survival in vitro, but may be required for the efficient export and functioning of some P. falciparum exported proteins.
  • Item
    No Preview Available
    Spatial and temporal mapping of the PfEMP1 export pathway in Plasmodium falciparum
    McMillan, PJ ; Millet, C ; Batinovic, S ; Maiorca, M ; Hanssen, E ; Kenny, S ; Muhle, RA ; Melcher, M ; Fidock, DA ; Smith, JD ; Dixon, MWA ; Tilley, L (WILEY, 2013-08)
    The human malaria parasite, Plasmodium falciparum, modifies the red blood cells (RBCs) that it infects by exporting proteins to the host cell. One key virulence protein, P. falciparum Erythrocyte Membrane Protein-1 (PfEMP1), is trafficked to the surface of the infected RBC, where it mediates adhesion to the vascular endothelium. We have investigated the organization and development of the exomembrane system that is used for PfEMP1 trafficking. Maurer's cleft cisternae are formed early after invasion and proteins are delivered to these (initially mobile) structures in a temporally staggered and spatially segregated manner. Membrane-Associated Histidine-Rich Protein-2 (MAHRP2)-containing tether-like structures are generated as early as 4 h post invasion and become attached to Maurer's clefts. The tether/Maurer's cleft complex docks onto the RBC membrane at ~20 h post invasion via a process that is not affected by cytochalasin D treatment. We have examined the trafficking of a GFP chimera of PfEMP1 expressed in transfected parasites. PfEMP1B-GFP accumulates near the parasite surface, within membranous structures exhibiting a defined ultrastructure, before being transferred to pre-formed mobile Maurer's clefts. Endogenous PfEMP1 and PfEMP1B-GFP are associated with Electron-Dense Vesicles that may be responsible for trafficking PfEMP1 from the Maurer's clefts to the RBC membrane.
  • Item
    Thumbnail Image
    Soft X-ray microscopy analysis of cell volume and hemoglobin content in erythrocytes infected with asexual and sexual stages of Plasmodium falciparum.
    HANSSEN, ERIC ; KNOECHEL, CHRISTIAN ; DEARNLEY, MEGAN ; Dixon, Matthew ; LE GROS, MARK ; LARABELL, CAROLYN ; TILLEY, LEANN ( 2011)