Bio21 - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Multimodal analysis of Plasmodium knowlesi-infected erythrocytes reveals large invaginations, swelling of the host cell, and rheological defects
    Liu, B ; Blanch, AJ ; Namvar, A ; Carmo, O ; Tiash, S ; Andrew, D ; Hanssen, E ; Rajagopal, V ; Dixon, MWA ; Tilley, L (WILEY-HINDAWI, 2019-05)
    The simian parasite Plasmodium knowlesi causes severe and fatal malaria infections in humans, but the process of host cell remodelling that underpins the pathology of this zoonotic parasite is only poorly understood. We have used serial block-face scanning electron microscopy to explore the topography of P. knowlesi-infected red blood cells (RBCs) at different stages of asexual development. The parasite elaborates large flattened cisternae (Sinton Mulligan's clefts) and tubular vesicles in the host cell cytoplasm, as well as parasitophorous vacuole membrane bulges and blebs, and caveolar structures at the RBC membrane. Large invaginations of host RBC cytoplasm are formed early in development, both from classical cytostomal structures and from larger stabilised pores. Although degradation of haemoglobin is observed in multiple disconnected digestive vacuoles, the persistence of large invaginations during development suggests inefficient consumption of the host cell cytoplasm. The parasite eventually occupies ~40% of the host RBC volume, inducing a 20% increase in volume of the host RBC and an 11% decrease in the surface area to volume ratio, which collectively decreases the ability of the P. knowlesi-infected RBCs to enter small capillaries of a human erythrocyte microchannel analyser. Ektacytometry reveals a markedly decreased deformability, whereas correlative light microscopy/scanning electron microscopy and python-based skeleton analysis (Skan) reveal modifications to the surface of infected RBCs that underpin these physical changes. We show that P. knowlesi-infected RBCs are refractory to treatment with sorbitol lysis but are hypersensitive to hypotonic lysis. The observed physical changes in the host RBCs may underpin the pathology observed in patients infected with P. knowlesi.
  • Item
    Thumbnail Image
    Disrupting assembly of the inner membrane complex blocks Plasmodium falciparum sexual stage development
    Schneider, MP ; Liu, B ; Glock, P ; Suttie, A ; McHugh, E ; Andrew, D ; Batinovic, S ; Williamson, N ; Hanssen, E ; McMillan, P ; Hliscs, M ; Tilley, L ; Dixon, MWA ; Gilberger, TW (PUBLIC LIBRARY SCIENCE, 2017-10)
    Transmission of malaria parasites relies on the formation of a specialized blood form called the gametocyte. Gametocytes of the human pathogen, Plasmodium falciparum, adopt a crescent shape. Their dramatic morphogenesis is driven by the assembly of a network of microtubules and an underpinning inner membrane complex (IMC). Using super-resolution optical and electron microscopies we define the ultrastructure of the IMC at different stages of gametocyte development. We characterize two new proteins of the gametocyte IMC, called PhIL1 and PIP1. Genetic disruption of PhIL1 or PIP1 ablates elongation and prevents formation of transmission-ready mature gametocytes. The maturation defect is accompanied by failure to form an enveloping IMC and a marked swelling of the digestive vacuole, suggesting PhIL1 and PIP1 are required for correct membrane trafficking. Using immunoprecipitation and mass spectrometry we reveal that PhIL1 interacts with known and new components of the gametocyte IMC.