Bio21 - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Plasma Docosahexaenoic Acid and Eicosapentaenoic Acid Concentrations Are Positively Associated with Brown Adipose Tissue Activity in Humans
    Xiang, AS ; Giles, C ; Loh, RKC ; Formosa, MF ; Eikelis, N ; Lambert, GW ; Meikle, PJ ; Kingwell, BA ; Carey, AL (MDPI, 2020-10)
    Brown adipose tissue (BAT) activation is a possible therapeutic strategy to increase energy expenditure and improve metabolic homeostasis in obesity. Recent studies have revealed novel interactions between BAT and circulating lipid species-in particular, the non-esterified fatty acid (NEFA) and oxylipin lipid classes. This study aimed to identify individual lipid species that may be associated with cold-stimulated BAT activity in humans. A panel of 44 NEFA and 41 oxylipin species were measured using mass-spectrometry-based lipidomics in the plasma of fourteen healthy male participants before and after 90 min of mild cold exposure. Lipid measures were correlated with BAT activity measured via 18F-fluorodeoxyglucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT), along with norepinephrine (NE) concentration (a surrogate marker of sympathetic activity). The study identified a significant increase in total NEFA concentration following cold exposure that was positively associated with NE concentration change. Individually, 33 NEFA and 11 oxylipin species increased significantly in response to cold exposure. The concentration of the omega-3 NEFA, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) at baseline was significantly associated with BAT activity, and the cold-induced change in 18 NEFA species was significantly associated with BAT activity. No significant associations were identified between BAT activity and oxylipins.
  • Item
    Thumbnail Image
    High placental inositol content associated with suppressed pro-adipogenic effects of maternal glycaemia in offspring: the GUSTO cohort
    Chu, AHY ; Tint, MT ; Chang, HF ; Wong, G ; Yuan, WL ; Tull, D ; Nijagal, B ; Narayana, VK ; Meikle, PJ ; Chang, KTE ; Lewis, RM ; Chi, C ; Yap, FKP ; Tan, KH ; Shek, LP ; Chong, Y-S ; Gluckman, PD ; Lee, YS ; Fortier, M ; Godfrey, KM ; Eriksson, JG ; Karnani, N ; Chan, S-Y (SPRINGERNATURE, 2021-01-01)
    Background/Objectives Maternal glycaemia promotes fetal adiposity. Inositol, an insulin sensitizer, has been trialled for gestational diabetes prevention. The placenta has been implicated in how maternal hyperglycaemia generates fetal pathophysiology, but no studies have examined whether placental inositol biology is altered with maternal hyperglycaemia, nor whether such alterations impact fetal physiology. We aimed to investigate whether the effects of maternal glycaemia on offspring birthweight and adiposity at birth differed across placental inositol levels. Methods Using longitudinal data from the Growing Up in Singapore Towards healthy Outcomes cohort, maternal fasting glucose (FPG) and 2-hour plasma glucose (2hPG) were obtained in pregnant women by a 75-g oral glucose tolerance test around 26 weeks’ gestation. Relative placental inositol was quantified by liquid chromatography-mass spectrometry. Primary outcomes were birthweight (n = 884) and abdominal adipose tissue (AAT) volumes measured by neonatal MRI scanning in a subset (n = 262) of term singleton pregnancies. Multiple linear regression analyses were performed. Results Placental inositol was lower in those with higher 2hPG, no exposure to tobacco smoke antenatally, with vaginal delivery and shorter gestation. Positive associations of FPG with birthweight (adjusted β [95% CI] 164.8 g [109.1, 220.5]) and AAT (17.3 ml [11.9, 22.6] per mmol glucose) were observed, with significant interactions between inositol tertiles and FPG in relation to these outcomes (p < 0.05). Stratification by inositol tertiles showed that each mmol/L increase in FPG was associated with increased birthweight and AAT volume among cases within the lowest (birthweight = 174.2 g [81.2, 267.2], AAT = 21.0 ml [13.1, 28.8]) and middle inositol tertiles (birthweight = 202.0 g [103.8, 300.1], AAT = 19.7 ml [9.7, 29.7]). However, no significant association was found among cases within the highest tertile (birthweight = 81.0 g [−21.2, 183.2], AAT = 0.8 ml [−8.4, 10.0]). Conclusions High placental inositol may protect the fetus from the pro-adipogenic effects of maternal glycaemia. Studies are warranted to investigate whether prenatal inositol supplementation can increase placental inositol and reduce fetal adiposity.
  • Item
    Thumbnail Image
    Development and variation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients
    Hilvo, M ; Meikle, PJ ; Pedersen, ER ; Tell, GS ; Dhar, I ; Brenner, H ; Schoettker, B ; Laaperi, M ; Kauhanen, D ; Koistinen, KM ; Jylha, A ; Huynh, K ; Mellett, NA ; Tonkin, AM ; Sullivan, DR ; Simes, J ; Nestel, P ; Koenig, W ; Rothenbacher, D ; Nygard, O ; Laaksonen, R (OXFORD UNIV PRESS, 2020-01-14)
    AIMS: Distinct ceramide lipids have been shown to predict the risk for cardiovascular disease (CVD) events, especially cardiovascular death. As phospholipids have also been linked with CVD risk, we investigated whether the combination of ceramides with phosphatidylcholines (PCs) would be synergistic in the prediction of CVD events in patients with atherosclerotic coronary heart disease in three independent cohort studies. METHODS AND RESULTS: Ceramides and PCs were analysed using liquid chromatography-mass spectrometry (LC-MS) in three studies: WECAC (The Western Norway Coronary Angiography Cohort) (N = 3789), LIPID (Long-Term Intervention with Pravastatin in Ischaemic Disease) trial (N = 5991), and KAROLA (Langzeiterfolge der KARdiOLogischen Anschlussheilbehandlung) (N = 1023). A simple risk score, based on the ceramides and PCs showing the best prognostic features, was developed in the WECAC study and validated in the two other cohorts. This score was highly significant in predicting CVD mortality [multiadjusted hazard ratios (HRs; 95% confidence interval) per standard deviation were 1.44 (1.28-1.63) in WECAC, 1.47 (1.34-1.61) in the LIPID trial, and 1.69 (1.31-2.17) in KAROLA]. In addition, a combination of the risk score with high-sensitivity troponin T increased the HRs to 1.63 (1.44-1.85) and 2.04 (1.57-2.64) in WECAC and KAROLA cohorts, respectively. The C-statistics in WECAC for the risk score combined with sex and age was 0.76 for CVD death. The ceramide-phospholipid risk score showed comparable and synergistic predictive performance with previously published CVD risk models for secondary prevention. CONCLUSION: A simple ceramide- and phospholipid-based risk score can efficiently predict residual CVD event risk in patients with coronary artery disease.
  • Item
    Thumbnail Image
    High-coverage plasma lipidomics reveals novel sex-specific lipidomic fingerprints of age and BMI: Evidence from two large population cohort studies
    Beyene, HB ; Olshansky, G ; Smith, AAT ; Giles, C ; Huynh, K ; Cinel, M ; Mellett, NA ; Cadby, G ; Hung, J ; Hui, J ; Beilby, J ; Watts, GF ; Shaw, JS ; Moses, EK ; Magliano, DJ ; Meikle, PJ ; Locasale, JW (PUBLIC LIBRARY SCIENCE, 2020-09)
    Obesity and related metabolic diseases show clear sex-related differences. The growing burden of these diseases calls for better understanding of the age- and sex-related metabolic consequences. High-throughput lipidomic analyses of population-based cohorts offer an opportunity to identify disease-risk-associated biomarkers and to improve our understanding of lipid metabolism and biology at a population level. Here, we comprehensively examined the relationship between lipid classes/subclasses and molecular species with age, sex, and body mass index (BMI). Furthermore, we evaluated sex specificity in the association of the plasma lipidome with age and BMI. Some 747 targeted lipid measures, representing 706 molecular lipid species across 36 classes/subclasses, were measured using a high-performance liquid chromatography coupled mass spectrometer on a total of 10,339 participants from the Australian Diabetes, Obesity and Lifestyle Study (AusDiab), with 563 lipid species being validated externally on 4,207 participants of the Busselton Health Study (BHS). Heat maps were constructed to visualise the relative differences in lipidomic profile between men and women. Multivariable linear regression analyses, including sex-interaction terms, were performed to assess the associations of lipid species with cardiometabolic phenotypes. Associations with age and sex were found for 472 (66.9%) and 583 (82.6%) lipid species, respectively. We further demonstrated that age-associated lipidomic fingerprints differed by sex. Specific classes of ether-phospholipids and lysophospholipids (calculated as the sum composition of the species within the class) were inversely associated with age in men only. In analyses with women alone, higher triacylglycerol and lower lysoalkylphosphatidylcholine species were observed among postmenopausal women compared with premenopausal women. We also identified sex-specific associations of lipid species with obesity. Lysophospholipids were negatively associated with BMI in both sexes (with a larger effect size in men), whilst acylcarnitine species showed opposing associations based on sex (positive association in women and negative association in men). Finally, by utilising specific lipid ratios as a proxy for enzymatic activity, we identified stearoyl CoA desaturase (SCD-1), fatty acid desaturase 3 (FADS3), and plasmanylethanolamine Δ1-desaturase activities, as well as the sphingolipid metabolic pathway, as constituent perturbations of cardiometabolic phenotypes. Our analyses elucidate the effect of age and sex on lipid metabolism by offering a comprehensive view of the lipidomic profiles associated with common cardiometabolic risk factors. These findings have implications for age- and sex-dependent lipid metabolism in health and disease and suggest the need for sex stratification during lipid biomarker discovery, establishing biological reference intervals for assessment of disease risk.
  • Item
    Thumbnail Image
    Krill Oil Has Different Effects on the Plasma Lipidome Compared with Fish Oil Following 30 Days of Supplementation in Healthy Women: A Randomized Controlled and Crossover Study
    Sung, HH ; Sinclair, AJ ; Huynh, K ; Smith, AAT ; Mellett, NA ; Meikle, PJ ; Su, XQ (MDPI, 2020-09)
    This is a follow-up of our previous postprandial study and it focused on the plasma lipidomic responses to 30 days of krill oil (KO) versus fish oil (FO) supplementations in healthy women. Eleven women (aged 18-50 years) consumed KO or FO for 30 days in a randomized, cross-over study, with at least a four-week washout period between supplementations. The daily supplements provided 1.27 g/day of long-chain (LC) omega-3 polyunsaturated fatty acids (PUFA) from KO (containing 0.76 g eicosapentaenoic acid (EPA), 0.42 g docosahexaenoic acid (DHA)) and 1.44 g/day from FO (containing 0.79 g EPA, 0.47 g DHA). Fasting plasma samples at days 0, 15, and 30 were analyzed using gas chromatography and liquid chromatography electrospray ionisation-tandem mass spectrometry. KO resulted in a significantly greater relative area under the curve (relAUC) for plasma EPA after 30 days. Lipidomic analysis showed that 26 of 43 lipid molecular species had a significantly greater relAUC in the KO group, while 17/43 showed a significantly lower relAUC compared with the FO group. More than 38% of the lipids species which increased more following KO contained omega-3 PUFA, while where FO was greater than KO, only 12% contained omega-3 PUFA. These data show that KO and FO do not have equivalent effects on the plasma lipidome.
  • Item
    Thumbnail Image
    Shared reference materials harmonize lipidomics across MS-based detection platforms and laboratories[S]
    Triebl, A ; Burla, B ; Selvalatchmanan, J ; Oh, J ; Tan, SH ; Chan, MY ; Mellett, NA ; Meikle, PJ ; Torta, F ; Wenk, MR (ELSEVIER, 2020-01)
    Quantitative MS of human plasma lipids is a promising technology for translation into clinical applications. Current MS-based lipidomic methods rely on either direct infusion (DI) or chromatographic lipid separation methods (including reversed phase and hydrophilic interaction LC). However, the use of lipid markers in laboratory medicine is limited by the lack of reference values, largely because of considerable differences in the concentrations measured by different laboratories worldwide. These inconsistencies can be explained by the use of different sample preparation protocols, method-specific calibration procedures, and other experimental and data-reporting parameters, even when using identical starting materials. Here, we systematically investigated the roles of some of these variables in multiple approaches to lipid analysis of plasma samples from healthy adults by considering: 1) different sample introduction methods (separation vs. DI methods); 2) different MS instruments; and 3) between-laboratory differences in comparable analytical platforms. Each of these experimental variables resulted in different quantitative results, even with the inclusion of isotope-labeled internal standards for individual lipid classes. We demonstrated that appropriate normalization to commonly available reference samples (i.e., "shared references") can largely correct for these systematic method-specific quantitative biases. Thus, to harmonize data in the field of lipidomics, in-house long-term references should be complemented by a commonly available shared reference sample, such as NIST SRM 1950, in the case of human plasma.
  • Item
    Thumbnail Image
    Short-term inhibition of autophagy benefits pancreatic β-cells by augmenting ether lipids and peroxisomal function, and by countering depletion of n-3 polyunsaturated fatty acids after fat-feeding
    Chu, KY ; Mellet, N ; Thai, LM ; Meikle, PJ ; Biden, TJ (ELSEVIER, 2020-10)
    OBJECTIVE: Investigations of autophagy in β-cells have usually focused on its homeostatic function. More dynamic roles in inhibiting glucose-stimulated insulin secretion (GSIS), potentially involving remodelling of cellular lipids, have been suggested from in vitro studies but not evaluated in vivo. METHODS: We employed temporally-regulated deletion of the essential autophagy gene, Atg7, in β-cells. Mice were fed chow or high-fat diets (HFD), in conjunction with deletion of Atg7 for the last 3 weeks (short-term model) or 9 weeks (long-term model). Standard in vivo metabolic phenotyping was undertaken, and 450 lipid species in islets quantified ex vivo using mass spectroscopy (MS). MIN6 cells were also employed for lipidomics and secretory interventions. RESULTS: β-cell function was impaired by inhibiting autophagy in the longer-term, but conversely improved by 3-week deletion of Atg7, specifically under HFD conditions. This was accompanied by augmented GSIS ex vivo. Surprisingly, the HFD had minimal effect on sphingolipid and neutral lipid species, but modulated >100 phospholipids and ether lipids, and markedly shifted the profile of polyunsaturated fatty acid (PUFA) sidechains from n3 to n6 forms. These changes were partially countered by Atg7 deletion, consistent with an accompanying upregulation of the PUFA elongase enzyme, Elovl5. Loss of Atg7 separately augmented plasmalogens and alkyl lipids, in association with increased expression of Lonp2, a peroxisomal chaperone/protease that facilitates maturation of ether lipid synthetic enzymes. Depletion of PUFAs and ether lipids was also observed in MIN6 cells chronically exposed to oleate (more so than palmitate). GSIS was inhibited by knocking down Dhrs7b, which encodes an enzyme of peroxisomal ether lipid synthesis. Conversely, impaired GSIS due to oleate pre-treatment was selectively reverted by Dhrs7b overexpression. CONCLUSIONS: A detrimental increase in n6:n3 PUFA ratios in ether lipids and phospholipids is revealed as a major response of β-cells to high-fat feeding. This is partially reversed by short-term inhibition of autophagy, which results in compensatory changes in peroxisomal lipid metabolism. The short-term phenotype is linked to improved GSIS, in contrast to the impairment seen with the longer-term inhibition of autophagy. The balance between these positive and negative inputs could help determine whether β-cells adapt or fail in response to obesity.
  • Item
    Thumbnail Image
    Sex and APOE ε4 genotype modify the Alzheimer's disease serum metabolome
    Arnold, M ; Nho, K ; Kueider-Paisley, A ; Massaro, T ; Huynh, K ; Brauner, B ; MahmoudianDehkordi, S ; Louie, G ; Moseley, MA ; Thompson, JW ; St John-Williams, L ; Tenenbaum, JD ; Blach, C ; Chang, R ; Brinton, RD ; Baillie, R ; Han, X ; Trojanowski, JQ ; Shaw, LM ; Martins, R ; Weiner, MW ; Trushina, E ; Toledo, JB ; Meikle, PJ ; Bennett, DA ; Krumsiek, J ; Doraiswamy, PM ; Saykin, AJ ; Kaddurah-Daouk, R ; Kastenmueller, G (NATURE PUBLISHING GROUP, 2020-03-02)
    Late-onset Alzheimer's disease (AD) can, in part, be considered a metabolic disease. Besides age, female sex and APOE ε4 genotype represent strong risk factors for AD that also give rise to large metabolic differences. We systematically investigated group-specific metabolic alterations by conducting stratified association analyses of 139 serum metabolites in 1,517 individuals from the AD Neuroimaging Initiative with AD biomarkers. We observed substantial sex differences in effects of 15 metabolites with partially overlapping differences for APOE ε4 status groups. Several group-specific metabolic alterations were not observed in unstratified analyses using sex and APOE ε4 as covariates. Combined stratification revealed further subgroup-specific metabolic effects limited to APOE ε4+ females. The observed metabolic alterations suggest that females experience greater impairment of mitochondrial energy production than males. Dissecting metabolic heterogeneity in AD pathogenesis can therefore enable grading the biomedical relevance for specific pathways within specific subgroups, guiding the way to personalized medicine.