Radiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Gait stability reflects motor tracts damage at early stages of multiple sclerosis
    Lizama, LEC ; Strik, M ; Van der Walt, A ; Kilpatrick, TJ ; Kolbe, SC ; Galea, MP (SAGE PUBLICATIONS LTD, 2022-10)
    BACKGROUND: Gait in people with multiple sclerosis (PwMS) is affected even when no changes can be observed on clinical examination. A sensitive measure of gait deterioration is stability; however, its correlation with motor tract damage has not yet been established. OBJECTIVE: To compare stability between PwMS and healthy controls (HCs) and determine associations between stability and diffusion magnetic resonance image (MRI) measures of axonal damage in selected sensorimotor tracts. METHODS: Twenty-five PwMS (Expanded Disability Status Scale (EDSS) < 2.5) and 15 HCs walked on a treadmill. Stability from sacrum (LDESAC), shoulder (LDESHO) and cervical (LDECER) was calculated using the local divergence exponent (LDE). Participants underwent a 7T-MRI brain scan to obtain fibre-specific measures of axonal loss within the corticospinal tract (CST), interhemispheric sensorimotor tract (IHST) and cerebellothalamic tract (CTT). Correlation analyses between LDE and fibre density (FD) within tracts, fibre cross-section (FC) and FD modulated by FC (FDC) were conducted. Between-groups LDE differences were analysed using analysis of variance (ANOVA). RESULTS: Correlations between all stability measures with CSTFD, between CSTFDC with LDESAC and LDECER, and LDECER with IHSTFD and IHSTFDC were significant yet moderate (R < -0.4). Stability was significantly different between groups. CONCLUSIONS: Poorer gait stability is associated with corticospinal tract (CST) axonal loss in PwMS with no-to-low disability and is a sensitive indicator of neurodegeneration.
  • Item
    Thumbnail Image
    Axonal loss in major sensorimotor tracts is associated with impaired motor performance in minimally disabled multiple sclerosis patients
    Strik, M ; Lizama, LEC ; Shanahan, CJ ; van der Walt, A ; Boonstra, FMC ; Glarin, R ; Kilpatrick, TJ ; Geurts, JJG ; Cleary, JO ; Schoonheim, MM ; Galea, MP ; Kolbe, SC (OXFORD UNIV PRESS, 2021)
    Multiple sclerosis is a neuroinflammatory disease of the CNS that is associated with significant irreversible neuro-axonal loss, leading to permanent disability. There is thus an urgent need for in vivo markers of axonal loss for use in patient monitoring or as end-points for trials of neuroprotective agents. Advanced diffusion MRI can provide markers of diffuse loss of axonal fibre density or atrophy within specific white matter pathways. These markers can be interrogated in specific white matter tracts that underpin important functional domains such as sensorimotor function. This study aimed to evaluate advanced diffusion MRI markers of axonal loss within the major sensorimotor tracts of the brain, and to correlate the degree of axonal loss in these tracts to precise kinematic measures of hand and foot motor control and gait in minimally disabled people with multiple sclerosis. Twenty-eight patients (Expanded Disability Status Scale < 4, and Kurtzke Functional System Scores for pyramidal and cerebellar function ≤ 2) and 18 healthy subjects underwent ultra-high field 7 Tesla diffusion MRI for calculation of fibre-specific measures of axonal loss (fibre density, reflecting diffuse axonal loss and fibre cross-section reflecting tract atrophy) within three tracts: cortico-spinal tract, interhemispheric sensorimotor tract and cerebello-thalamic tracts. A visually guided force-matching task involving either the hand or foot was used to assess visuomotor control, and three-dimensional marker-based video tracking was used to assess gait. Fibre-specific axonal markers for each tract were compared between groups and correlated with visuomotor task performance (force error and lag) and gait parameters (stance, stride length, step width, single and double support) in patients. Patients displayed significant regional loss of fibre cross-section with minimal loss of fibre density in all tracts of interest compared to healthy subjects (family-wise error corrected p-value < 0.05), despite relatively few focal lesions within these tracts. In patients, reduced axonal fibre density and cross-section within the corticospinal tracts and interhemispheric sensorimotor tracts were associated with larger force tracking error and gait impairments (shorter stance, smaller step width and longer double support) (family-wise error corrected p-value < 0.05). In conclusion, significant gait and motor control impairments can be detected in minimally disabled people with multiple sclerosis that correlated with axonal loss in major sensorimotor pathways of the brain. Given that axonal loss is irreversible, the combined use of advanced imaging and kinematic markers could be used to identify patients at risk of more severe motor impairments as they emerge for more aggressive therapeutic interventions.
  • Item
    Thumbnail Image
    Speech metrics, general disability, brain imaging and quality of life in multiple sclerosis
    Noffs, G ; Boonstra, FMC ; Perera, T ; Butzkueven, H ; Kolbe, SC ; Maldonado, F ; Cofre Lizama, LE ; Galea, MP ; Stankovich, J ; Evans, A ; van Der Walt, A ; Vogel, AP (WILEY, 2021-01)
    BACKGROUND AND PURPOSE: Objective measurement of speech has shown promising results to monitor disease state in multiple sclerosis. In this study, we characterize the relationship between disease severity and speech metrics through perceptual (listener based) and objective acoustic analysis. We further look at deviations of acoustic metrics in people with no perceivable dysarthria. METHODS: Correlations and regression were calculated between speech measurements and disability scores, brain volume, lesion load and quality of life. Speech measurements were further compared between three subgroups of increasing overall neurological disability: mild (as rated by the Expanded Disability Status Scale ≤2.5), moderate (≥3 and ≤5.5) and severe (≥6). RESULTS: Clinical speech impairment occurred majorly in people with severe disability. An experimental acoustic composite score differentiated mild from moderate (P < 0.001) and moderate from severe subgroups (P = 0.003), and correlated with overall neurological disability (r = 0.6, P < 0.001), quality of life (r = 0.5, P < 0.001), white matter volume (r = 0.3, P = 0.007) and lesion load (r = 0.3, P = 0.008). Acoustic metrics also correlated with disability scores in people with no perceivable dysarthria. CONCLUSIONS: Acoustic analysis offers a valuable insight into the development of speech impairment in multiple sclerosis. These results highlight the potential of automated analysis of speech to assist in monitoring disease progression and treatment response.