Radiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    Thumbnail Image
    Glutamate weighted imaging contrast in gliomas with 7 Tesla magnetic resonance imaging
    Neal, A ; Moffat, BA ; Stein, JM ; Nanga, RPR ; Desmond, P ; Shinohara, RT ; Hariharan, H ; Glarin, R ; Drummond, K ; Morokoff, A ; Kwan, P ; Reddy, R ; O'Brien, TJ ; Davis, KA (ELSEVIER SCI LTD, 2019)
    INTRODUCTION: Diffuse gliomas are incurable malignancies, which undergo inevitable progression and are associated with seizure in 50-90% of cases. Glutamate has the potential to be an important glioma biomarker of survival and local epileptogenicity if it can be accurately quantified noninvasively. METHODS: We applied the glutamate-weighted imaging method GluCEST (glutamate chemical exchange saturation transfer) and single voxel MRS (magnetic resonance spectroscopy) at 7 Telsa (7 T) to patients with gliomas. GluCEST contrast and MRS metabolite concentrations were quantified within the tumour region and peritumoural rim. Clinical variables of tumour aggressiveness (prior adjuvant therapy and previous radiological progression) and epilepsy (any prior seizures, seizure in last month and drug refractory epilepsy) were correlated with respective glutamate concentrations. Images were separated into post-hoc determined patterns and clinical variables were compared across patterns. RESULTS: Ten adult patients with a histo-molecular (n = 9) or radiological (n = 1) diagnosis of grade II-III diffuse glioma were recruited, 40.3 +/- 12.3 years. Increased tumour GluCEST contrast was associated with prior adjuvant therapy (p = .001), and increased peritumoural GluCEST contrast was associated with both recent seizures (p = .038) and drug refractory epilepsy (p = .029). We distinguished two unique GluCEST contrast patterns with distinct clinical and radiological features. MRS glutamate correlated with GluCEST contrast within the peritumoural voxel (R = 0.89, p = .003) and a positive trend existed in the tumour voxel (R = 0.65, p = .113). CONCLUSION: This study supports the role of glutamate in diffuse glioma biology. It further implicates elevated peritumoural glutamate in epileptogenesis and altered tumour glutamate homeostasis in glioma aggressiveness. Given the ability to non-invasively visualise and quantify glutamate, our findings raise the prospect of 7 T GluCEST selecting patients for individualised therapies directed at the glutamate pathway. Larger studies with prospective follow-up are required.
  • Item
    Thumbnail Image
    Comparison between site and central radiological assessments for patients with recurrent glioblastoma on a clinical trial
    Field, KM ; Fitt, G ; Rosenthal, MA ; Simes, J ; Nowak, AK ; Barnes, EH ; Sawkins, K ; Goh, C ; Moffat, BA ; Salinas, S ; Cher, L ; Wheeler, H ; Hovey, EJ ; Phal, PM (WILEY, 2018-10)
    AIM: Assessment of magnetic resonance imaging (MRI) in glioblastoma can be challenging. For patients with recurrent glioblastoma managed on the CABARET trial, we compared disease status assessed at hospitals and subsequent blinded central expert radiological review. METHODS: MRI results and clinical status at specified time points were used for site and central assessment of disease status. Clinical status was determined by the site. Response Assessment in Neuro-Oncology (RANO) criteria were used for both assessments. Site and central assessments of progression-free survival (PFS) and response rates were compared. Inter-rater variability for central review progression dates was assessed. RESULTS: Central review resulted in shorter PFS in 45% of 89 evaluable patients (n = 40). Median PFS was 3.6 (central) versus 3.9 months (site) (hazard ratio 1.5, 95% confidence interval 1.3-1.8, P < 0.001). Responses were documented more frequently by sites (n = 16, 18%) than centrally (n = 11, 12%). Seven of 120 patients continued on trial without site-determined progression for more than 6 months beyond the central review determination of progression. Of scans reviewed by all three central reviewers, 33% were fully concordant for progression date. CONCLUSION: While the difference between site and central PFS dates was statistically significant, the 0.3-month median difference is small. The variability within central review is consistent with previous studies, highlighting the challenges in MRI interpretation in this context. A small proportion of patients benefited from treatment well beyond the centrally determined progression date, reinforcing that clinical status together with radiology results are important determinants of whether a therapy is effective for an individual.
  • Item
    Thumbnail Image
    3D-multi-echo radial imaging of 23Na (3D-MERINA) for time-efficient multi-parameter tissue compartment mapping
    Blunck, Y ; Josan, S ; Taqdees, SW ; Moffat, BA ; Ordidge, RJ ; Cleary, JO ; Johnston, LA (WILEY, 2018-04)
  • Item
    Thumbnail Image
    Alterations in dorsal and ventral posterior cingulate connectivity in APOE ε4 carriers at risk of Alzheimer's disease
    Kerestes, R ; Phal, PM ; Steward, C ; Moffat, BA ; Salinas, S ; Cox, KL ; Ellis, KA ; Cyarto, EV ; Ames, D ; Martins, RN ; Masters, CL ; Rowe, CC ; Sharman, MJ ; Salvado, O ; Szoeke, C ; Lai, M ; Lautenschlager, NT ; Desmond, PM (ROYAL COLL PSYCHIATRISTS, 2015-10)
  • Item
    Thumbnail Image
    Novel Functional MRI Task for Studying the Neural Correlates of Upper Limb Tremor
    Boonstra, FMC ; Perera, T ; Noffs, G ; Marotta, C ; Vogel, AP ; Evans, AH ; Butzkueven, H ; Moffat, BA ; van der Walt, A ; Kolbe, SC (FRONTIERS MEDIA SA, 2018-07-02)
    Introduction: Tremor of the upper limbs is a disabling symptom that is present during several neurological disorders and is currently without treatment. Functional MRI (fMRI) is an essential tool to investigate the pathophysiology of tremor and aid the development of treatment options. However, no adequately or standardized protocols for fMRI exists at present. Here we present a novel, online available fMRI task that could be used to assess the in vivo pathology of tremor. Objective: This study aims to validate the tremor-evoking potential of the fMRI task in a small group of tremor patients outside the scanner and assess the reproducibility of the fMRI task related activation in healthy controls. Methods: Twelve HCs were scanned at two time points (baseline and after 6-weeks). There were two runs of multi-band fMRI and the tasks included a "brick-breaker" joystick game. The game consisted of three conditions designed to control for most of the activation related to performing the task by contrasting the conditions: WATCH (look at the game without moving joystick), MOVE (rhythmic left/right movement of joystick without game), and PLAY (playing the game). Task fMRI was analyzed using FSL FEAT to determine clusters of activation during the different conditions. Maximum activation within the clusters was used to assess the ability to control for task related activation and reproducibility. Four tremor patients have been included to test ecological and construct validity of the joystick task by assessing tremor frequencies captured by the joystick. Results: In HCs the game activated areas corresponding to motor, attention and visual areas. Most areas of activation by our game showed moderate to good reproducibility (intraclass correlation coefficient (ICC) 0.531-0.906) with only inferior parietal lobe activation showing poor reproducibility (ICC 0.446). Furthermore, the joystick captured significantly more tremulous movement in tremor patients compared to HCs (p = 0.01) during PLAY, but not during MOVE. Conclusion: Validation of our novel task confirmed tremor-evoking potential and reproducibility analyses yielded acceptable results to continue further investigations into the pathophysiology of tremor. The use of this technique in studies with tremor patient will no doubt provide significant insights into the treatment options.
  • Item
    Thumbnail Image
    Feasibility of identifying the ideal locations for motor intention decoding using unimodal and multimodal classification at 7T-fMRI
    Yoo, PE ; Oxley, TJ ; John, SE ; Opie, NL ; Ordidge, RJ ; O'Brien, TJ ; Hagan, MA ; Wong, YT ; Moffat, BA (NATURE PORTFOLIO, 2018-10-22)
    Invasive Brain-Computer Interfaces (BCIs) require surgeries with high health-risks. The risk-to-benefit ratio of the procedure could potentially be improved by pre-surgically identifying the ideal locations for mental strategy classification. We recorded high-spatiotemporal resolution blood-oxygenation-level-dependent (BOLD) signals using functional MRI at 7 Tesla in eleven healthy participants during two motor imagery tasks. BCI diagnostic task isolated the intent to imagine movements, while BCI simulation task simulated the neural states that may be yielded in a real-life BCI-operation scenario. Imagination of movements were classified from the BOLD signals in sub-regions of activation within a single or multiple dorsal motor network regions. Then, the participant's decoding performance during the BCI simulation task was predicted from the BCI diagnostic task. The results revealed that drawing information from multiple regions compared to a single region increased the classification accuracy of imagined movements. Importantly, systematic unimodal and multimodal classification revealed the ideal combination of regions that yielded the best classification accuracy at the individual-level. Lastly, a given participant's decoding performance achieved during the BCI simulation task could be predicted from the BCI diagnostic task. These results show the feasibility of 7T-fMRI with unimodal and multimodal classification being utilized for identifying ideal sites for mental strategy classification.
  • Item
    Thumbnail Image
    Early perfusion MRI predicts survival outcome in patients with recurrent glioblastoma treated with bevacizumab and carboplatin
    Bennett, IE ; Field, KM ; Hovens, CM ; Moffat, BA ; Rosenthal, MA ; Drummond, K ; Kaye, AH ; Morokoff, AP (SPRINGER, 2017-01)
    Bevacizumab, an anti-angiogenic agent, is FDA-approved for use in patients with recurrent glioblastoma multiforme (rGBM). The radiologic evaluation of tumor response to bevacizumab is complex and there is no validated method of monitoring tumor vascularity during therapy. We evaluated perfusion-weighted MR imaging (PWI) in our cohort of patients enrolled in the CABARET trial, which examined the effectiveness of bevacizumab with or without carboplatin in patients with rGBM. Pre-treatment and early follow-up (4- and 8-week) PWI were used to calculate relative cerebral blood volume (rCBV) histogram statistics of the contrast-enhancing and FLAIR hyperintense tumor volumes. A novel rCBV measurement (load) was developed to estimate the total volume of perfused tumor blood vessels. Changes in all rCBV measures were examined for correlations with progression-free (PFS) and overall survival (OS). All of our 15 patients enrolled in the CABARET trial were included. Median PFS and OS were 23 and 45 weeks respectively. Kaplan-Meier analysis of pre-treatment PWI revealed an 18 week reduction in median OS in patients with high tumor rCBV (p = 0.031). Changes in rCBV measures, especially load, correlated significantly with PFS and OS at both follow-up time-points. Patients with the greatest reduction in rCBVload by 8-weeks of therapy had a significantly increased median OS (30 weeks; p = 0.013). PWI may be of significant clinical utility in managing patients with rGBM, particularly those treated with anti-angiogenic agents such as bevacizumab. These findings need to be confirmed prospectively in larger studies.
  • Item
    Thumbnail Image
    Tremor in multiple sclerosis is associated with cerebello-thalamic pathology
    Boonstra, F ; Florescu, G ; Evans, A ; Steward, C ; Mitchell, P ; Desmond, P ; Moffat, B ; Butzkueven, H ; Kolbe, S ; van der Walt, A (SPRINGER WIEN, 2017-12)
    Tremor in people with multiple sclerosis (MS) is a frequent and debilitating symptom with a relatively poorly understood pathophysiology. To determine the relationship between clinical tremor severity and structural magnetic resonance imaging parameters. Eleven patients with clinically definite MS and right-sided upper limb tremor were studied. Tremor severity was assessed using the Bain score (overall severity, writing, and Archimedes spiral drawing). Cerebellar dysfunction was assessed using the Scale for the Assessment and Rating of Ataxia. Dystonia was assessed using the Global Dystonia Scale adapted for upper limb. For all subjects, volume was calculated for the thalamus from T1-weighted volumetric scans using Freesurfer. Superior cerebellar peduncle (SCP) cross-sectional areas were measured manually. The presence of lesions was visually determined and the lesion volumes were calculated by the lesion growth algorithm as implemented in the Lesion Segmentation Toolbox. Right thalamic volume negatively correlated with Bain tremor severity score (ρ = - 0.65, p = 0.03). Left thalamic volume negatively correlated with general Bain tremor severity score (ρ = - 0.65, p = 0.03) and the Bain writing score (ρ = - 0.65, p = 0.03). Right SCP area negatively correlated with Bain writing score (ρ = - 0.69, p = 0.02). Finally, Bain Archimedes score was significantly higher in patients with lesions in the contralateral thalamus. Whole brain lesion load showed no relationship with tremor severity. These results implicate degeneration of key structures within the cerebello-thalamic pathway as pathological substrates for tremor in MS patients.
  • Item
    Thumbnail Image
    Technologies for Advanced Gait and Balance Assessments in People with Multiple Sclerosis
    Shanahan, CJ ; Boonstra, FMC ; Lizama, LEC ; Strik, M ; Moffat, BA ; Khan, F ; Kilpatrick, TJ ; van der Walt, A ; Galea, MP ; Kolbe, SC (FRONTIERS MEDIA SA, 2018-02-02)
    Subtle gait and balance dysfunction is a precursor to loss of mobility in multiple sclerosis (MS). Biomechanical assessments using advanced gait and balance analysis technologies can identify these subtle changes and could be used to predict mobility loss early in the disease. This update critically evaluates advanced gait and balance analysis technologies and their applicability to identifying early lower limb dysfunction in people with MS. Non-wearable (motion capture systems, force platforms, and sensor-embedded walkways) and wearable (pressure and inertial sensors) biomechanical analysis systems have been developed to provide quantitative gait and balance assessments. Non-wearable systems are highly accurate, reliable and provide detailed outcomes, but require cumbersome and expensive equipment. Wearable systems provide less detail but can be used in community settings and can provide real-time feedback to patients and clinicians. Biomechanical analysis using advanced gait and balance analysis technologies can identify changes in gait and balance in early MS and consequently have the potential to significantly improve monitoring of mobility changes in MS.
  • Item
    Thumbnail Image
    7T-fMRI: Faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution
    Yoo, PE ; John, SE ; Farquharson, S ; Cleary, JO ; Wong, YT ; Ng, A ; Mulcahy, CB ; Grayden, DB ; Ordidge, RJ ; Opie, NL ; O'Brien, TJ ; Oxley, TJ ; Moffat, BA (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2018-01-01)
    Recent developments in accelerated imaging methods allow faster acquisition of high spatial resolution images. This could improve the applications of functional magnetic resonance imaging at 7 Tesla (7T-fMRI), such as neurosurgical planning and Brain Computer Interfaces (BCIs). However, increasing the spatial and temporal resolution will both lead to signal-to-noise ratio (SNR) losses due to decreased net magnetization per voxel and T1-relaxation effect, respectively. This could potentially offset the SNR efficiency gains made with increasing temporal resolution. We investigated the effects of varying spatial and temporal resolution on fMRI sensitivity measures and their implications on fMRI-based BCI simulations. We compared temporal signal-to-noise ratio (tSNR), observed percent signal change (%∆S), volumes of significant activation, Z-scores and decoding performance of linear classifiers commonly used in BCIs across a range of spatial and temporal resolution images acquired during an ankle-tapping task. Our results revealed an average increase of 22% in %∆S (p=0.006) and 9% in decoding performance (p=0.015) with temporal resolution only at the highest spatial resolution of 1.5×1.5×1.5mm3, despite a 29% decrease in tSNR (p<0.001) and plateaued Z-scores. Further, the volume of significant activation was indifferent (p>0.05) across spatial resolution specifically at the highest temporal resolution of 500ms. These results demonstrate that the overall BOLD sensitivity can be increased significantly with temporal resolution, granted an adequately high spatial resolution with minimal physiological noise level. This shows the feasibility of diffuse motor-network imaging at high spatial and temporal resolution with robust BOLD sensitivity with 7T-fMRI. Importantly, we show that this sensitivity improvement could be extended to an fMRI application such as BCIs.