Radiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    No Preview Available
    WWOX developmental and epileptic encephalopathy: Understanding the epileptology and the mortality risk
    Oliver, KL ; Trivisano, M ; Mandelstam, SA ; De Dominicis, A ; Francis, DI ; Green, TE ; Muir, AM ; Chowdhary, A ; Hertzberg, C ; Goldhahn, K ; Metreau, J ; Prager, C ; Pinner, J ; Cardamone, M ; Myers, KA ; Leventer, RJ ; Lesca, G ; Bahlo, M ; Hildebrand, MS ; Mefford, HC ; Kaindl, AM ; Specchio, N ; Scheffer, IE (WILEY, 2023-05)
    OBJECTIVE: WWOX is an autosomal recessive cause of early infantile developmental and epileptic encephalopathy (WWOX-DEE), also known as WOREE (WWOX-related epileptic encephalopathy). We analyzed the epileptology and imaging features of WWOX-DEE, and investigated genotype-phenotype correlations, particularly with regard to survival. METHODS: We studied 13 patients from 12 families with WWOX-DEE. Information regarding seizure semiology, comorbidities, facial dysmorphisms, and disease outcome were collected. Electroencephalographic (EEG) and brain magnetic resonance imaging (MRI) data were analyzed. Pathogenic WWOX variants from our cohort and the literature were coded as either null or missense, allowing individuals to be classified into one of three genotype classes: (1) null/null, (2) null/missense, (3) missense/missense. Differences in survival outcome were estimated using the Kaplan-Meier method. RESULTS: All patients experienced multiple seizure types (median onset = 5 weeks, range = 1 day-10 months), the most frequent being focal (85%), epileptic spasms (77%), and tonic seizures (69%). Ictal EEG recordings in six of 13 patients showed tonic (n = 5), myoclonic (n = 2), epileptic spasms (n = 2), focal (n = 1), and migrating focal (n = 1) seizures. Interictal EEGs demonstrated slow background activity with multifocal discharges, predominantly over frontal or temporo-occipital regions. Eleven of 13 patients had a movement disorder, most frequently dystonia. Brain MRIs revealed severe frontotemporal, hippocampal, and optic atrophy, thin corpus callosum, and white matter signal abnormalities. Pathogenic variants were located throughout WWOX and comprised both missense and null changes including five copy number variants (four deletions, one duplication). Survival analyses showed that patients with two null variants are at higher mortality risk (p-value = .0085, log-rank test). SIGNIFICANCE: Biallelic WWOX pathogenic variants cause an early infantile developmental and epileptic encephalopathy syndrome. The most common seizure types are focal seizures and epileptic spasms. Mortality risk is associated with mutation type; patients with biallelic null WWOX pathogenic variants have significantly lower survival probability compared to those carrying at least one presumed hypomorphic missense pathogenic variant.
  • Item
    Thumbnail Image
    Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome
    Stephenson, SEM ; Costain, G ; Blok, LER ; Silk, MA ; Nguyen, TB ; Dong, X ; Alhuzaimi, DE ; Dowling, JJ ; Walker, S ; Amburgey, K ; Hayeems, RZ ; Rodan, LH ; Schwartz, MA ; Picker, J ; Lynch, SA ; Gupta, A ; Rasmussen, KJ ; Schimmenti, LA ; Klee, EW ; Niu, Z ; Agre, KE ; Chilton, I ; Chung, WK ; Revah-Politi, A ; Au, PYB ; Griffith, C ; Racobaldo, M ; Raas-Rothschild, A ; Ben Zeev, B ; Barel, O ; Moutton, S ; Morice-Picard, F ; Carmignac, V ; Cornaton, J ; Marle, N ; Devinsky, O ; Stimach, C ; Wechsler, SB ; Hainline, BE ; Sapp, K ; Willems, M ; Bruel, A ; Dias, K-R ; Evans, C-A ; Roscioli, T ; Sachdev, R ; Temple, SEL ; Zhu, Y ; Baker, JJ ; Scheffer, IE ; Gardiner, FJ ; Schneider, AL ; Muir, AM ; Mefford, HC ; Crunk, A ; Heise, EM ; Millan, F ; Monaghan, KG ; Person, R ; Rhodes, L ; Richards, S ; Wentzensen, IM ; Cogne, B ; Isidor, B ; Nizon, M ; Vincent, M ; Besnard, T ; Piton, A ; Marcelis, C ; Kato, K ; Koyama, N ; Ogi, T ; Goh, ES-Y ; Richmond, C ; Amor, DJ ; Boyce, JO ; Morgan, AT ; Hildebrand, MS ; Kaspi, A ; Bahlo, M ; Fridriksdottir, R ; Katrinardottir, H ; Sulem, P ; Stefansson, K ; Bjornsson, HT ; Mandelstam, S ; Morleo, M ; Mariani, M ; Scala, M ; Accogli, A ; Torella, A ; Capra, V ; Wallis, M ; Jansen, S ; Waisfisz, Q ; de Haan, H ; Sadedin, S ; Lim, SC ; White, SM ; Ascher, DB ; Schenck, A ; Lockhart, PJ ; Christodoulou, J ; Tan, TY (CELL PRESS, 2022-04-07)
    Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.
  • Item
    Thumbnail Image
    Infantile-onset myoclonic developmental and epileptic encephalopathy: A new RARS2 phenotype
    de Valles-Ibanez, G ; Hildebrand, MS ; Bahlo, M ; King, C ; Coleman, M ; Green, TE ; Goldsmith, J ; Davis, S ; Gill, D ; Mandelstam, S ; Scheffer, IE ; Sadleir, LG (WILEY, 2022-03)
    Recessive variants in RARS2, a nuclear gene encoding a mitochondrial protein, were initially reported in pontocerebellar hypoplasia. Subsequently, a recessive RARS2 early-infantile (<12 weeks) developmental and epileptic encephalopathy was described with hypoglycaemia and lactic acidosis. Here, we describe two unrelated patients with a novel RARS2 phenotype and reanalyse the published RARS2 epilepsy phenotypes and variants. Our novel cases had infantile-onset myoclonic developmental and epileptic encephalopathy, presenting with a progressive movement disorder from 9 months on a background of normal development. Development plateaued and regressed thereafter, with mild to profound impairment. Multiple drug-resistant generalized and focal seizures occurred with episodes of non-convulsive status epilepticus. Seizure types included absence, atonic, myoclonic, and focal seizures. Electroencephalograms showed diffuse slowing, multifocal, and generalised spike-wave activity, activated by sleep. Both patients had compound heterozygous RARS2 variants with likely impact on splicing and transcription. Remarkably, of the now 52 RARS2 variants reported in 54 patients, our reanalysis found that 44 (85%) have been shown to or are predicted to affect splicing or gene expression leading to protein truncation or nonsense-mediated decay. We expand the RARS2 phenotypic spectrum to include infantile encephalopathy and suggest this gene is enriched for pathogenic variants that disrupt splicing.
  • Item
    Thumbnail Image
    Mosaic uniparental disomy results in GM1 gangliosidosis with normal enzyme assay
    Myers, KA ; Bennett, MF ; Chow, CW ; Carden, SM ; Mandelstam, SA ; Bahlo, M ; Scheffer, IE (WILEY, 2018-01)
    Inherited metabolic disorders are traditionally diagnosed using broad and expensive panels of screening tests, often including invasive skin and muscle biopsy. Proponents of next-generation genetic sequencing have argued that replacing these screening panels with whole exome sequencing (WES) would save money. Here, we present a complex patient in whom WES allowed diagnosis of GM1 gangliosidosis, caused by homozygous GLB1 mutations, resulting in β-galactosidase deficiency. A 10-year-old girl had progressive neurologic deterioration, macular cherry-red spot, and cornea verticillata. She had marked clinical improvement with initiation of the ketogenic diet. Comparative genomic hybridization microarray showed mosaic chromosome 3 paternal uniparental disomy (UPD). GM1 gangliosidosis was suspected, however β-galactosidase assay was normal. Trio WES identified a paternally-inherited pathogenic splice-site GLB1 mutation (c.75+2dupT). The girl had GM1 gangliosidosis; however, enzymatic testing in blood was normal, presumably compensated for by non-UPD cells. Severe neurologic dysfunction occurred due to disruptive effects of UPD brain cells.
  • Item
    Thumbnail Image
    Epidemiology and etiology of infantile developmental and epileptic encephalopathies in Tasmania
    Ware, TL ; Huskins, SR ; Grinton, BE ; Liu, Y-C ; Bennett, MF ; Harvey, M ; McMahon, J ; Andreopoulos-Malikotsinas, D ; Bahlo, M ; Howell, KB ; Hildebrand, MS ; Damiano, JA ; Rosenfeld, A ; Mackay, MT ; Mandelstam, S ; Leventer, RJ ; Harvey, AS ; Freeman, JL ; Scheffer, IE ; Jones, DL ; Berkovic, SF (WILEY, 2019-09)
    We sought to determine incidence, etiologies, and yield of genetic testing in infantile onset developmental and epileptic encephalopathies (DEEs) in a population isolate, with an intensive multistage approach. Infants born in Tasmania between 2011 and 2016, with seizure onset <2 years of age, epileptiform EEG, frequent seizures, and developmental impairment, were included. Following review of EEG databases, medical records, brain MRIs, and other investigations, clinical genetic testing was undertaken with subsequent research interrogation of whole exome sequencing (WES) in unsolved cases. The incidence of infantile DEEs was 0.44/1000 per year (95% confidence interval 0.25 to 0.71), with 16 cases ascertained. The etiology was structural in 5/16 cases. A genetic basis was identified in 6 of the remaining 11 cases (3 gene panel, 3 WES). In two further cases, WES identified novel variants with strong in silico data; however, paternal DNA was not available to support pathogenicity. The etiology was not determined in 3/16 (19%) cases, with a candidate gene identified in one of these. Pursuing clinical imaging and genetic testing followed by WES at an intensive research level can give a high diagnostic yield in the infantile DEEs, providing a solid base for prognostic and genetic counseling.
  • Item
    Thumbnail Image
    Variants of ST8SIA1 Are Associated with Risk of Developing Multiple Sclerosis
    Husain, S ; Yildirim-Toruner, C ; Rubio, JP ; Field, J ; Schwalb, M ; Cook, S ; Devoto, M ; Vitale, E ; Reitsma, PH (PUBLIC LIBRARY SCIENCE, 2008-07-09)
    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system of unknown etiology with both genetic and environmental factors playing a role in susceptibility. To date, the HLA DR15/DQ6 haplotype within the major histocompatibility complex on chromosome 6p, is the strongest genetic risk factor associated with MS susceptibility. Additional alleles of IL7 and IL2 have been identified as risk factors for MS with small effect. Here we present two independent studies supporting an allelic association of MS with polymorphisms in the ST8SIA1 gene, located on chromosome 12p12 and encoding ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1. The initial association was made in a single three-generation family where a single-nucleotide polymorphism (SNP) rs4762896, was segregating together with HLA DR15/DQ6 in MS patients. A study of 274 family trios (affected child and both unaffected parents) from Australia validated the association of ST8SIA1 in individuals with MS, showing transmission disequilibrium of the paternal alleles for three additional SNPs, namely rs704219, rs2041906, and rs1558793, with p = 0.001, p = 0.01 and p = 0.01 respectively. These findings implicate ST8SIA1 as a possible novel susceptibility gene for MS.
  • Item
    Thumbnail Image
    Closing the case of APOE in multiple sclerosis: no association with disease risk in over 29 000 subjects
    Lill, CM ; Liu, T ; Schjeide, B-MM ; Roehr, JT ; Akkad, DA ; Damotte, V ; Alcina, A ; Ortiz, MA ; Arroyo, R ; Lopez de lapuente, A ; Blaschke, P ; Winkelmann, A ; Gerdes, L-A ; Luessi, F ; Fernadez, O ; Izquierdo, G ; Antigueedad, A ; Hoffjan, S ; Cournu-Rebeix, I ; Gromoeller, S ; Faber, H ; Liebsch, M ; Meissner, E ; Chanvillard, C ; Touze, E ; Pico, F ; Corcia, P ; Doerner, T ; Steinhagen-Thiessen, E ; Baeckman, L ; Heekeren, HR ; Li, S-C ; Lindenberger, U ; Chan, A ; Hartung, H-P ; Aktas, O ; Lohse, P ; Kuempfel, T ; Kubisch, C ; Epplen, JT ; Zettl, UK ; Fontaine, B ; Vandenbroeck, K ; Matesanz, F ; Urcelay, E ; Bertram, L ; Zipp, F (BMJ PUBLISHING GROUP, 2012-09)
    BACKGROUND: Single nucleotide polymorphisms (SNPs) rs429358 (ε4) and rs7412 (ε2), both invoking changes in the amino-acid sequence of the apolipoprotein E (APOE) gene, have previously been tested for association with multiple sclerosis (MS) risk. However, none of these studies was sufficiently powered to detect modest effect sizes at acceptable type-I error rates. As both SNPs are only imperfectly captured on commonly used microarray genotyping platforms, their evaluation in the context of genome-wide association studies has been hindered until recently. METHODS: We genotyped 12 740 subjects hitherto not studied for their APOE status, imputed raw genotype data from 8739 subjects from five independent genome-wide association studies datasets using the most recent high-resolution reference panels, and extracted genotype data for 8265 subjects from previous candidate gene assessments. RESULTS: Despite sufficient power to detect associations at genome-wide significance thresholds across a range of ORs, our analyses did not support a role of rs429358 or rs7412 on MS susceptibility. This included meta-analyses of the combined data across 13 913 MS cases and 15 831 controls (OR=0.95, p=0.259, and OR 1.07, p=0.0569, for rs429358 and rs7412, respectively). CONCLUSION: Given the large sample size of our analyses, it is unlikely that the two APOE missense SNPs studied here exert any relevant effects on MS susceptibility.
  • Item
    Thumbnail Image
    Comparing genotyping algorithms for Illumina's Infinium whole-genome SNP BeadChips
    Ritchie, ME ; Liu, R ; Carvalho, BS ; Irizarry, RA (BMC, 2011-03-08)
    BACKGROUND: Illumina's Infinium SNP BeadChips are extensively used in both small and large-scale genetic studies. A fundamental step in any analysis is the processing of raw allele A and allele B intensities from each SNP into genotype calls (AA, AB, BB). Various algorithms which make use of different statistical models are available for this task. We compare four methods (GenCall, Illuminus, GenoSNP and CRLMM) on data where the true genotypes are known in advance and data from a recently published genome-wide association study. RESULTS: In general, differences in accuracy are relatively small between the methods evaluated, although CRLMM and GenoSNP were found to consistently outperform GenCall. The performance of Illuminus is heavily dependent on sample size, with lower no call rates and improved accuracy as the number of samples available increases. For X chromosome SNPs, methods with sex-dependent models (Illuminus, CRLMM) perform better than methods which ignore gender information (GenCall, GenoSNP). We observe that CRLMM and GenoSNP are more accurate at calling SNPs with low minor allele frequency than GenCall or Illuminus. The sample quality metrics from each of the four methods were found to have a high level of agreement at flagging samples with unusual signal characteristics. CONCLUSIONS: CRLMM, GenoSNP and GenCall can be applied with confidence in studies of any size, as their performance was shown to be invariant to the number of samples available. Illuminus on the other hand requires a larger number of samples to achieve comparable levels of accuracy and its use in smaller studies (50 or fewer individuals) is not recommended.
  • Item
    Thumbnail Image
    Multiple Sclerosis Susceptibility-Associated SNPs Do Not Influence Disease Severity Measures in a Cohort of Australian MS Patients
    Jensen, CJ ; Stankovich, J ; Van der Walt, A ; Bahlo, M ; Taylor, BV ; van der Mei, IAF ; Foote, SJ ; Kilpatrick, TJ ; Johnson, LJ ; Wilkins, E ; Field, J ; Danoy, P ; Brown, MA ; Rubio, JP ; Butzkueven, H ; Kleinschnitz, C (PUBLIC LIBRARY SCIENCE, 2010-04-02)
    Recent association studies in multiple sclerosis (MS) have identified and replicated several single nucleotide polymorphism (SNP) susceptibility loci including CLEC16A, IL2RA, IL7R, RPL5, CD58, CD40 and chromosome 12q13-14 in addition to the well established allele HLA-DR15. There is potential that these genetic susceptibility factors could also modulate MS disease severity, as demonstrated previously for the MS risk allele HLA-DR15. We investigated this hypothesis in a cohort of 1006 well characterised MS patients from South-Eastern Australia. We tested the MS-associated SNPs for association with five measures of disease severity incorporating disability, age of onset, cognition and brain atrophy. We observed trends towards association between the RPL5 risk SNP and time between first demyelinating event and relapse, and between the CD40 risk SNP and symbol digit test score. No associations were significant after correction for multiple testing. We found no evidence for the hypothesis that these new MS disease risk-associated SNPs influence disease severity.
  • Item
    Thumbnail Image
    Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20
    Bahlo, M ; Booth, DR ; Broadley, SA ; Brown, MA ; Foote, SJ ; Griffiths, LR ; Kilpatrick, TJ ; Lechner-Scott, J ; Moscato, P ; Perreau, VM ; Rubio, JP ; Scott, RJ ; Stankovich, J ; Stewart, GJ ; Taylor, BV ; Wiley, J ; Clarke, G ; Cox, MB ; Csurhes, PA ; Danoy, P ; Drysdale, K ; Field, J ; Foote, SJ ; Greer, JM ; Guru, P ; Hadler, J ; McMorran, BJ ; Jensen, CJ ; Johnson, LJ ; McCallum, R ; Merriman, M ; Merriman, T ; Pryce, K ; Tajouri, L ; Wilkins, EJ ; Browning, BL ; Browning, SR ; Perera, D ; Butzkueven, H ; Carroll, WM ; Chapman, C ; Kermode, AG ; Marriott, M ; Mason, D ; Heard, RN ; Pender, MP ; Slee, M ; Tubridy, N ; Willoughby, E (NATURE PUBLISHING GROUP, 2009-07)
    To identify multiple sclerosis (MS) susceptibility loci, we conducted a genome-wide association study (GWAS) in 1,618 cases and used shared data for 3,413 controls. We performed replication in an independent set of 2,256 cases and 2,310 controls, for a total of 3,874 cases and 5,723 controls. We identified risk-associated SNPs on chromosome 12q13-14 (rs703842, P = 5.4 x 10(-11); rs10876994, P = 2.7 x 10(-10); rs12368653, P = 1.0 x 10(-7)) and upstream of CD40 on chromosome 20q13 (rs6074022, P = 1.3 x 10(-7); rs1569723, P = 2.9 x 10(-7)). Both loci are also associated with other autoimmune diseases. We also replicated several known MS associations (HLA-DR15, P = 7.0 x 10(-184); CD58, P = 9.6 x 10(-8); EVI5-RPL5, P = 2.5 x 10(-6); IL2RA, P = 7.4 x 10(-6); CLEC16A, P = 1.1 x 10(-4); IL7R, P = 1.3 x 10(-3); TYK2, P = 3.5 x 10(-3)) and observed a statistical interaction between SNPs in EVI5-RPL5 and HLA-DR15 (P = 0.001).