Radiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    No Preview Available
    Association Between Cognitive Function and Clustered Cardiovascular Risk of Metabolic Syndrome in Older Adults at Risk of Cognitive Decline
    Lai, MMY ; Ames, DJ ; Cox, KL ; Ellis, KA ; Sharman, MJ ; Hepworth, G ; Desmond, P ; Cyarto, E ; Szoeke, C ; Martins, R ; Masters, CL ; Lautenschlager, NT (SPRINGER FRANCE, 2020-03)
    OBJECTIVES: Metabolic syndrome (MetS) represents a cluster of obesity and insulin resistance-related comorbidities. Abdominal obesity, hypertension, elevated triglyceride and glucose levels are components of MetS and may have a negative effect on cognitive function, but few cognitive studies have examined the combined risk severity. We sought to determine which specific cognitive abilities were associated with MetS in older adults at risk of cognitive decline. DESIGN: Cross-sectional study. PARTICIPANTS: 108 AIBL Active participants with memory complaints and at least one cardiovascular risk factor. MEASUREMENTS: Cardiovascular parameters and blood tests were obtained to assess metabolic syndrome criteria. The factors of MetS were standardized to obtain continuous z-scores. A battery of neuropsychological tests was used to evaluate cognitive function. RESULTS: Higher MetS z-scores were associated with poorer global cognition using ADAS-cog (adjusted standardized beta=0.26, SE 0.11, p<0.05) and higher Trail Making B scores (adjusted beta=0.23, SE 0.11, p<0.05). Higher MetS risk was related to lower cognitive performance. CONCLUSION: Combined risk due to multiple risk factors in MetS was related to lower global cognitive performance and executive function. A higher MetS risk burden may point to opportunities for cognitive testing in older adults as individuals may experience cognitive changes.
  • Item
    Thumbnail Image
    Baseline White Matter Is Associated With Physical Fitness Change in Preclinical Alzheimer's Disease
    Venkatraman, VK ; Steward, CE ; Cox, KL ; Ellis, KA ; Phal, PM ; Sharman, MJ ; Villemagne, VL ; Lai, MMY ; Cyarto, E ; Ames, D ; Szoeke, C ; Rowe, CC ; Masters, CL ; Lautenschlager, NT ; Desmond, PM (FRONTIERS MEDIA SA, 2020-04-29)
    White matter (WM) microstructure is a sensitive marker to distinguish individuals at risk of Alzheimer's disease. The association of objective physical fitness (PF) measures and WM microstructure has not been explored and mixed results reported with physical activity (PA). Longitudinal studies of WM with PA and PF measures have had limited investigation. This study explored the relationship between objective PF measures over 24-months with "normal-appearing" WM microstructure. Data acquired on magnetic resonance imaging was used to measure "normal-appearing" WM microstructure at baseline and 24-months. Clinical variables such as cognitive and blood-based measures were collected longitudinally. Also, as part of the randomized controlled trial of a PA, extensive measures of PA and fitness were obtained over the 24 months. Bilateral corticospinal tracts (CST) and the corpus callosum showed a significant association between PF performance over 24-months and baseline WM microstructural measures. There was no significant longitudinal effect of the intervention or PF performance over 24-months. Baseline WM microstructural measures were significantly associated with PF performance over 24-months in this cohort of participants with vascular risk factors and at risk of Alzheimer's disease with distinctive patterns for each PF test.