Radiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Sodium selenate as a disease-modifying treatment for progressive supranuclear palsy: protocol for a phase 2, randomised, double-blind, placebo-controlled trial
    Vivash, L ; Bertram, KL ; Malpas, CB ; Marotta, C ; Harding, IH ; Kolbe, S ; Fielding, J ; Clough, M ; Lewis, SJG ; Tisch, S ; Evans, AH ; O'Sullivan, JD ; Kimber, T ; Darby, D ; Churilov, L ; Law, M ; Hovens, CM ; Velakoulis, D ; O'Brien, TJ (BMJ PUBLISHING GROUP, 2021-12)
    INTRODUCTION: Progressive supranuclear palsy (PSP) is a neurodegenerative disorder for which there are currently no disease-modifying therapies. The neuropathology of PSP is associated with the accumulation of hyperphosphorylated tau in the brain. We have previously shown that protein phosphatase 2 activity in the brain is upregulated by sodium selenate, which enhances dephosphorylation. Therefore, the objective of this study is to evaluate the efficacy and safety of sodium selenate as a disease-modifying therapy for PSP. METHODS AND ANALYSIS: This will be a multi-site, phase 2b, double-blind, placebo-controlled trial of sodium selenate. 70 patients will be recruited at six Australian academic hospitals and research institutes. Following the confirmation of eligibility at screening, participants will be randomised (1:1) to receive 52 weeks of active treatment (sodium selenate; 15 mg three times a day) or matching placebo. Regular safety and efficacy visits will be completed throughout the study period. The primary study outcome is change in an MRI volume composite (frontal lobe+midbrain-3rd ventricle) over the treatment period. Analysis will be with a general linear model (GLM) with the MRI composite at 52 weeks as the dependent variable, treatment group as an independent variable and baseline MRI composite as a covariate. Secondary outcomes are change in PSP rating scale, clinical global impression of change (clinician) and change in midbrain mean diffusivity. These outcomes will also be analysed with a GLM as above, with the corresponding baseline measure entered as a covariate. Secondary safety and tolerability outcomes are frequency of serious adverse events, frequency of down-titration occurrences and frequency of study discontinuation. Additional, as yet unplanned, exploratory outcomes will include analyses of other imaging, cognitive and biospecimen measures. ETHICS AND DISSEMINATION: The study was approved by the Alfred Health Ethics Committee (594/20). Each participant or their legally authorised representative and their study partner will provide written informed consent at trial commencement. The results of the study will be presented at national and international conferences and published in peer-reviewed journals. TRIAL REGISTRATION NUMBER: Australian New Zealand Clinical Trials Registry (ACTRN12620001254987).
  • Item
    Thumbnail Image
    Speech metrics, general disability, brain imaging and quality of life in multiple sclerosis
    Noffs, G ; Boonstra, FMC ; Perera, T ; Butzkueven, H ; Kolbe, SC ; Maldonado, F ; Cofre Lizama, LE ; Galea, MP ; Stankovich, J ; Evans, A ; van Der Walt, A ; Vogel, AP (WILEY, 2021-01)
    BACKGROUND AND PURPOSE: Objective measurement of speech has shown promising results to monitor disease state in multiple sclerosis. In this study, we characterize the relationship between disease severity and speech metrics through perceptual (listener based) and objective acoustic analysis. We further look at deviations of acoustic metrics in people with no perceivable dysarthria. METHODS: Correlations and regression were calculated between speech measurements and disability scores, brain volume, lesion load and quality of life. Speech measurements were further compared between three subgroups of increasing overall neurological disability: mild (as rated by the Expanded Disability Status Scale ≤2.5), moderate (≥3 and ≤5.5) and severe (≥6). RESULTS: Clinical speech impairment occurred majorly in people with severe disability. An experimental acoustic composite score differentiated mild from moderate (P < 0.001) and moderate from severe subgroups (P = 0.003), and correlated with overall neurological disability (r = 0.6, P < 0.001), quality of life (r = 0.5, P < 0.001), white matter volume (r = 0.3, P = 0.007) and lesion load (r = 0.3, P = 0.008). Acoustic metrics also correlated with disability scores in people with no perceivable dysarthria. CONCLUSIONS: Acoustic analysis offers a valuable insight into the development of speech impairment in multiple sclerosis. These results highlight the potential of automated analysis of speech to assist in monitoring disease progression and treatment response.