Radiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    No Preview Available
    Normative retrobulbar measurements of the optic nerve using ultra high field magnetic resonance imaging
    Nguyen, BN ; Cleary, JO ; Glarin, R ; Kolbe, SC ; Moffat, BA ; Ordidge, RJ ; Bui, BV ; McKendrick, AM (Association for Research in Vision and Ophthalmology, 2019-07-01)
    Purpose : We exploit the improved spatial resolution and signal-to-noise gain of ultra high field (7T) magnetic resonance imaging (MRI) with a dedicated eye coil for more accurate morphometric measurements of the optic nerve ~2.5mm behind the globe. Methods : Coronal T2-weighted oblique images (TR=2000ms, TE=64ms, FOV=155mm, matrix=384 x 384, slice thickness=0.7mm, scan time=2’34”) through the optic nerve were obtained in 21 healthy adults (20-41 years, 11 emmetropes: +0.75 to -0.50D, 10 myopes: -4.5 to -12D) using a 7T Siemens Magnetom scanner (Erlangen, Germany) and 6-channel eye coil (MRI.TOOLS GmbH, Berlin, Germany). Horizontal and vertical outer diameter of the optic nerve, subarachnoid space (fluid gap) and optic sheath were measured by hand using biomedical imaging software (OsiriX, Pixmeo, Switzerland) (Figure). Significant motion artefacts were avoided with customised fixation and preparation techniques. Results : Horizontal and vertical measurements were similar so were averaged. Right and left eye diameters did not differ and were highly correlated (optic nerve: Pearson r=0.9, p<0.001; fluid gap: r=0.8, p<0.001; optic sheath: r=0.7, p<0.001); hence we report left eye data only. Optic nerve diameter (average of horizontal and vertical diameters) ranged from 2.8-4.1mm in emmetropes and 1.5-4.2mm in myopes and correlated with refractive error (Spearman r=0.46, p=0.04). Similarly, fluid gap diameter (emmetropes: 3.6-5.5mm, myopes: 2.5-5.6mm), but not optic sheath diameter (emmetropes: 4.5-6.8mm, myopes: 4.2-6.8mm), correlated with refractive error (r=0.47, p=0.03). Conclusions : Ultra high field MRI with thinner slices enables more accurate demarcation of the optic nerve, surrounding fluid/subarachnoid space and optic sheath without overlapping of neighbouring anatomy (minimal partial volume artefact). Our 7T MRI-derived normative measurements of optic nerve, fluid gap and sheath diameter are comparable with published reports in healthy observers obtained at conventional MRI magnetic fields (1.5-3T). Our findings suggest a trend for retrobulbar optic nerve and subarachnoid space, but not optic sheath, to be smaller in high myopes.
  • Item
    Thumbnail Image
    3D-multi-echo radial imaging of 23Na (3D-MERINA) for time-efficient multi-parameter tissue compartment mapping
    Blunck, Y ; Josan, S ; Taqdees, SW ; Moffat, BA ; Ordidge, RJ ; Cleary, JO ; Johnston, LA (WILEY, 2018-04)
  • Item
    Thumbnail Image
    Compressed sensing effects on quantitative analysis of undersampled human brain sodium MRI
    Blunck, Y ; Kolbe, SC ; Moffat, BA ; Ordidge, RJ ; Cleary, JO ; Johnston, LA (Wiley, 2020-03)
    Purpose The clinical application of sodium MRI is hampered due to relatively low image quality and associated long acquisition times. Compressed sensing (CS) aims at a reduction of measurement time, but has been found to encompass quantitative estimation bias when used in low SNR x‐Nuclei imaging. This work analyses CS in quantitative human brain sodium MRI from undersampled acquisitions and provides recommendations for tissue sodium concentration (TSC) estimation. Methods CS reconstructions from 3D radial acquisitions of 5 healthy volunteers were investigated over varying undersampling factors (USFs) and CS penalty weights on different sparsity domains, Wavelet, Discrete Cosine Transform (DCT), and Identity. Resulting images were compared with highly sampled and undersampled NUFFT‐based images and evaluated for image quality (i.e. structural similarity), image intensity bias, and its effect on TSC estimates in gray and white matter. Results Wavelet‐based CS reconstructions show highest image quality with stable TSC estimates for most USFs. Up to an USF of 4, images showed good structural detail. DCT and Identity‐based CS enable good image quality, however show a bias in TSC with a reduction in estimates across USFs. Conclusions The image intensity bias is lowest in Wavelet‐based reconstructions and enables an up to fourfold acquisition speed up while maintaining good structural detail. The associated acquisition time reduction can facilitate a translation of sodium MRI into clinical routine.
  • Item
    Thumbnail Image
    Extracting more for less: multi-echo MP2RAGE for simultaneous T1-weighted imaging, T1 mapping, R2*mapping, SWI, and QSM from a single acquisition
    Sun, H ; Cleary, JO ; Glarin, R ; Kolbe, SC ; Ordidge, RJ ; Moffat, BA ; Pike, GB (WILEY, 2020-04)
    PURPOSE: To demonstrate simultaneous T1 -weighted imaging, T1 mapping, R2∗ mapping, SWI, and QSM from a single multi-echo (ME) MP2RAGE acquisition. METHODS: A single-echo (SE) MP2RAGE sequence at 7 tesla was extended to ME with 4 bipolar gradient echo readouts. T1 -weighted images and T1 maps calculated from individual echoes were combined using sum of squares and averaged, respectively. ME-combined SWI and associated minimum intensity projection images were generated with TE-adjusted homodyne filters. A QSM reconstruction pipeline was used, including a phase-offsets correction and coil combination method to properly combine the phase images from the 32 receiver channels. Measurements of susceptibility, R2∗ , and T1 of brain tissue from ME-MP2RAGE were compared with those from standard ME-gradient echo and SE-MP2RAGE. RESULTS: The ME combined T1 -weighted, T1 map, SWI, and minimum intensity projection images showed increased SNRs compared to the SE results. The proposed coil combination method led to QSM results free of phase-singularity artifacts, which were present in the standard adaptive combination method. T1 -weighted, T1 , and susceptibility maps from ME-MP2RAGE were comparable to those obtained from SE-MP2RAGE and ME-gradient echo, whereas R2∗ maps showed increased blurring and reduced SNR. T1 , R2∗ , and susceptibility values of brain tissue from ME-MP2RAGE were consistent with those from SE-MP2RAGE and ME-gradient echo. CONCLUSION: High-resolution structural T1 weighted imaging, T1 mapping, R2∗ mapping, SWI, and QSM can be extracted from a single 8.5-min ME-MP2RAGE acquisition using a customized reconstruction pipeline. This method can be applied to replace separate SE-MP2RAGE and ME-gradient echo acquisitions to significantly shorten total scan time.
  • Item
    Thumbnail Image
    Ultra-high-field MRI using composite RF (STEP) pulses
    Ordidge, R ; Cleary, J ; Glarin, R ; Blunck, Y ; Farquharson, S ; Moffat, B (WILEY, 2021-02)
    Ultra-high field MRI offers many opportunities to expand the applications of MRI. In order for this to be realized, the technical problems associated with MRI at field strengths of 7 T and greater need to be solved or mitigated. This paper explores the use of new variations of composite RF pulses, named serial transmit excitation pulses (STEP), in contrast to parallel pulse techniques, in order to remove and/or mitigate the effects of non-uniform B1 excitation fields associated with the subject (eg the human brain). Several techniques based on STEP sequences are introduced and their application to human brain imaging is presented and evaluated.
  • Item
    Thumbnail Image
    7T-fMRI: Faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution
    Yoo, PE ; John, SE ; Farquharson, S ; Cleary, JO ; Wong, YT ; Ng, A ; Mulcahy, CB ; Grayden, DB ; Ordidge, RJ ; Opie, NL ; O'Brien, TJ ; Oxley, TJ ; Moffat, BA (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2018-01-01)
    Recent developments in accelerated imaging methods allow faster acquisition of high spatial resolution images. This could improve the applications of functional magnetic resonance imaging at 7 Tesla (7T-fMRI), such as neurosurgical planning and Brain Computer Interfaces (BCIs). However, increasing the spatial and temporal resolution will both lead to signal-to-noise ratio (SNR) losses due to decreased net magnetization per voxel and T1-relaxation effect, respectively. This could potentially offset the SNR efficiency gains made with increasing temporal resolution. We investigated the effects of varying spatial and temporal resolution on fMRI sensitivity measures and their implications on fMRI-based BCI simulations. We compared temporal signal-to-noise ratio (tSNR), observed percent signal change (%∆S), volumes of significant activation, Z-scores and decoding performance of linear classifiers commonly used in BCIs across a range of spatial and temporal resolution images acquired during an ankle-tapping task. Our results revealed an average increase of 22% in %∆S (p=0.006) and 9% in decoding performance (p=0.015) with temporal resolution only at the highest spatial resolution of 1.5×1.5×1.5mm3, despite a 29% decrease in tSNR (p<0.001) and plateaued Z-scores. Further, the volume of significant activation was indifferent (p>0.05) across spatial resolution specifically at the highest temporal resolution of 500ms. These results demonstrate that the overall BOLD sensitivity can be increased significantly with temporal resolution, granted an adequately high spatial resolution with minimal physiological noise level. This shows the feasibility of diffuse motor-network imaging at high spatial and temporal resolution with robust BOLD sensitivity with 7T-fMRI. Importantly, we show that this sensitivity improvement could be extended to an fMRI application such as BCIs.