Radiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Glutamate weighted imaging contrast in gliomas with 7 Tesla magnetic resonance imaging
    Neal, A ; Moffat, BA ; Stein, JM ; Nanga, RPR ; Desmond, P ; Shinohara, RT ; Hariharan, H ; Glarin, R ; Drummond, K ; Morokoff, A ; Kwan, P ; Reddy, R ; O'Brien, TJ ; Davis, KA (ELSEVIER SCI LTD, 2019)
    INTRODUCTION: Diffuse gliomas are incurable malignancies, which undergo inevitable progression and are associated with seizure in 50-90% of cases. Glutamate has the potential to be an important glioma biomarker of survival and local epileptogenicity if it can be accurately quantified noninvasively. METHODS: We applied the glutamate-weighted imaging method GluCEST (glutamate chemical exchange saturation transfer) and single voxel MRS (magnetic resonance spectroscopy) at 7 Telsa (7 T) to patients with gliomas. GluCEST contrast and MRS metabolite concentrations were quantified within the tumour region and peritumoural rim. Clinical variables of tumour aggressiveness (prior adjuvant therapy and previous radiological progression) and epilepsy (any prior seizures, seizure in last month and drug refractory epilepsy) were correlated with respective glutamate concentrations. Images were separated into post-hoc determined patterns and clinical variables were compared across patterns. RESULTS: Ten adult patients with a histo-molecular (n = 9) or radiological (n = 1) diagnosis of grade II-III diffuse glioma were recruited, 40.3 +/- 12.3 years. Increased tumour GluCEST contrast was associated with prior adjuvant therapy (p = .001), and increased peritumoural GluCEST contrast was associated with both recent seizures (p = .038) and drug refractory epilepsy (p = .029). We distinguished two unique GluCEST contrast patterns with distinct clinical and radiological features. MRS glutamate correlated with GluCEST contrast within the peritumoural voxel (R = 0.89, p = .003) and a positive trend existed in the tumour voxel (R = 0.65, p = .113). CONCLUSION: This study supports the role of glutamate in diffuse glioma biology. It further implicates elevated peritumoural glutamate in epileptogenesis and altered tumour glutamate homeostasis in glioma aggressiveness. Given the ability to non-invasively visualise and quantify glutamate, our findings raise the prospect of 7 T GluCEST selecting patients for individualised therapies directed at the glutamate pathway. Larger studies with prospective follow-up are required.
  • Item
    Thumbnail Image
    Repeated mild traumatic brain injuries induce persistent changes in plasma protein and magnetic resonance imaging biomarkers in the rat
    Wright, DK ; Brady, RD ; Kamnaksh, A ; Trezise, J ; Sun, M ; McDonald, SJ ; Mychasiuk, R ; Kolbe, SC ; Law, M ; Johnston, LA ; O'Brien, TJ ; Agoston, DV ; Shultz, SR (Nature Publishing Group, 2019-10-10)
    A single mild traumatic brain injury (mTBI) typically causes only transient symptoms, but repeated mTBI (RmTBI) is associated with cumulative and chronic neurological abnormalities. Clinical management of mTBI is challenging due to the heterogeneous, subjective and transient nature of symptoms, and thus would be aided by objective biomarkers. Promising biomarkers including advanced magnetic resonance imaging (MRI) and plasma levels of select proteins were examined here in a rat model of RmTBI. Rats received either two mild fluid percussion or sham injuries administered five days apart. Rats underwent MRI and behavioral testing 1, 3, 5, 7, and 30 days after the second injury and blood samples were collected on days 1, 7, and 30. Structural and diffusion-weighted MRI revealed that RmTBI rats had abnormalities in the cortex and corpus callosum. Proteomic analysis of plasma found that RmTBI rats had abnormalities in markers indicating axonal and vascular injury, metabolic and mitochondrial dysfunction, and glial reactivity. These changes occurred in the presence of ongoing cognitive and sensorimotor deficits in the RmTBI rats. Our findings demonstrate that RmTBI can result in chronic neurological abnormalities, provide insight into potential contributing pathophysiological mechanisms, and supports the use of MRI and plasma protein measures as RmTBI biomarkers.
  • Item
    Thumbnail Image
    Feasibility of identifying the ideal locations for motor intention decoding using unimodal and multimodal classification at 7T-fMRI
    Yoo, PE ; Oxley, TJ ; John, SE ; Opie, NL ; Ordidge, RJ ; O'Brien, TJ ; Hagan, MA ; Wong, YT ; Moffat, BA (NATURE PUBLISHING GROUP, 2018-10-22)
    Invasive Brain-Computer Interfaces (BCIs) require surgeries with high health-risks. The risk-to-benefit ratio of the procedure could potentially be improved by pre-surgically identifying the ideal locations for mental strategy classification. We recorded high-spatiotemporal resolution blood-oxygenation-level-dependent (BOLD) signals using functional MRI at 7 Tesla in eleven healthy participants during two motor imagery tasks. BCI diagnostic task isolated the intent to imagine movements, while BCI simulation task simulated the neural states that may be yielded in a real-life BCI-operation scenario. Imagination of movements were classified from the BOLD signals in sub-regions of activation within a single or multiple dorsal motor network regions. Then, the participant's decoding performance during the BCI simulation task was predicted from the BCI diagnostic task. The results revealed that drawing information from multiple regions compared to a single region increased the classification accuracy of imagined movements. Importantly, systematic unimodal and multimodal classification revealed the ideal combination of regions that yielded the best classification accuracy at the individual-level. Lastly, a given participant's decoding performance achieved during the BCI simulation task could be predicted from the BCI diagnostic task. These results show the feasibility of 7T-fMRI with unimodal and multimodal classification being utilized for identifying ideal sites for mental strategy classification.
  • Item
    Thumbnail Image
    Supranutritional Sodium Selenate Supplementation Delivers Selenium to the Central Nervous System: Results from a Randomized Controlled Pilot Trial in Alzheimer's Disease
    Cardoso, BR ; Roberts, BR ; Malpas, CB ; Vivash, L ; Genc, S ; Saling, MM ; Desmond, P ; Steward, C ; Hicks, RJ ; Callahan, J ; Brodtmann, A ; Collins, S ; Macfarlane, S ; Corcoran, NM ; Hovens, CM ; Velakoulis, D ; O'Brien, TJ ; Hare, DJ ; Bush, AI (SPRINGER, 2019-01)
    Insufficient supply of selenium to antioxidant enzymes in the brain may contribute to Alzheimer's disease (AD) pathophysiology; therefore, oral supplementation may potentially slow neurodegeneration. We examined selenium and selenoproteins in serum and cerebrospinal fluid (CSF) from a dual-dose 24-week randomized controlled trial of sodium selenate in AD patients, to assess tolerability, and efficacy of selenate in modulating selenium concentration in the central nervous system (CNS). A pilot study of 40 AD cases was randomized to placebo, nutritional (0.32 mg sodium selenate, 3 times daily), or supranutritional (10 mg, 3 times daily) groups. We measured total selenium, selenoproteins, and inorganic selenium levels, in serum and CSF, and compared against cognitive outcomes. Supranutritional selenium supplementation was well tolerated and yielded a significant (p < 0.001) but variable (95% CI = 13.4-24.8 μg/L) increase in CSF selenium, distributed across selenoproteins and inorganic species. Reclassifying subjects as either responsive or non-responsive based on elevation in CSF selenium concentrations revealed that responsive group did not deteriorate in Mini-Mental Status Examination (MMSE) as non-responsive group (p = 0.03). Pooled analysis of all samples revealed that CSF selenium could predict change in MMSE performance (Spearman's rho = 0.403; p = 0.023). High-dose sodium selenate supplementation is well tolerated and can modulate CNS selenium concentration, although individual variation in selenium metabolism must be considered to optimize potential benefits in AD. The Vel002 study is listed on the Australian and New Zealand Clinical Trials Registry ( http://www.anzctr.org.au /), ID: ACTRN12611001200976.
  • Item
    Thumbnail Image
    7T-fMRI: Faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution
    Yoo, PE ; John, SE ; Farquharson, S ; Cleary, JO ; Wong, YT ; Ng, A ; Mulcahy, CB ; Grayden, DB ; Ordidge, RJ ; Opie, NL ; O'Brien, TJ ; Oxley, TJ ; Moffat, BA (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2018-01-01)
    Recent developments in accelerated imaging methods allow faster acquisition of high spatial resolution images. This could improve the applications of functional magnetic resonance imaging at 7 Tesla (7T-fMRI), such as neurosurgical planning and Brain Computer Interfaces (BCIs). However, increasing the spatial and temporal resolution will both lead to signal-to-noise ratio (SNR) losses due to decreased net magnetization per voxel and T1-relaxation effect, respectively. This could potentially offset the SNR efficiency gains made with increasing temporal resolution. We investigated the effects of varying spatial and temporal resolution on fMRI sensitivity measures and their implications on fMRI-based BCI simulations. We compared temporal signal-to-noise ratio (tSNR), observed percent signal change (%∆S), volumes of significant activation, Z-scores and decoding performance of linear classifiers commonly used in BCIs across a range of spatial and temporal resolution images acquired during an ankle-tapping task. Our results revealed an average increase of 22% in %∆S (p=0.006) and 9% in decoding performance (p=0.015) with temporal resolution only at the highest spatial resolution of 1.5×1.5×1.5mm3, despite a 29% decrease in tSNR (p<0.001) and plateaued Z-scores. Further, the volume of significant activation was indifferent (p>0.05) across spatial resolution specifically at the highest temporal resolution of 500ms. These results demonstrate that the overall BOLD sensitivity can be increased significantly with temporal resolution, granted an adequately high spatial resolution with minimal physiological noise level. This shows the feasibility of diffuse motor-network imaging at high spatial and temporal resolution with robust BOLD sensitivity with 7T-fMRI. Importantly, we show that this sensitivity improvement could be extended to an fMRI application such as BCIs.
  • Item
    Thumbnail Image
    Development and Implementation of a Corriedale Ovine Brain Atlas for Use in Atlas-Based Segmentation
    Liyanage, KA ; Steward, C ; Moffat, BA ; Opie, NL ; Rind, GS ; John, SE ; Ronayne, S ; May, CN ; O'Brien, TJ ; Milne, ME ; Oxley, TJ ; Hu, D (PUBLIC LIBRARY SCIENCE, 2016-06-10)
    Segmentation is the process of partitioning an image into subdivisions and can be applied to medical images to isolate anatomical or pathological areas for further analysis. This process can be done manually or automated by the use of image processing computer packages. Atlas-based segmentation automates this process by the use of a pre-labelled template and a registration algorithm. We developed an ovine brain atlas that can be used as a model for neurological conditions such as Parkinson's disease and focal epilepsy. 17 female Corriedale ovine brains were imaged in-vivo in a 1.5T (low-resolution) MRI scanner. 13 of the low-resolution images were combined using a template construction algorithm to form a low-resolution template. The template was labelled to form an atlas and tested by comparing manual with atlas-based segmentations against the remaining four low-resolution images. The comparisons were in the form of similarity metrics used in previous segmentation research. Dice Similarity Coefficients were utilised to determine the degree of overlap between eight independent, manual and atlas-based segmentations, with values ranging from 0 (no overlap) to 1 (complete overlap). For 7 of these 8 segmented areas, we achieved a Dice Similarity Coefficient of 0.5-0.8. The amygdala was difficult to segment due to its variable location and similar intensity to surrounding tissues resulting in Dice Coefficients of 0.0-0.2. We developed a low resolution ovine brain atlas with eight clinically relevant areas labelled. This brain atlas performed comparably to prior human atlases described in the literature and to intra-observer error providing an atlas that can be used to guide further research using ovine brains as a model and is hosted online for public access.
  • Item
    No Preview Available
    A mouse model of Alzheimer's disease displays increased susceptibility to kindling and seizure-associated death
    BUSH, AI ; Chan, J ; Jones, NC ; O'Brien, TJ ; Kwan, P (Wiley, 2015)
    People with Alzheimer's disease (AD) are up to 10 times more likely to develop epilepsy than the age-matched general population. However, given that only a proportion of patients with AD develop epilepsy, it is likely that additional factors may be required for the epilepsy to emerge. This study aimed to better understand the relationship between AD pathology and seizure susceptibility. It also aimed to investigate a "two-hit" hypothesis for seizure susceptibility through amygdala kindling of rodent AD models. Aged AD mice (Tg2576 model) and wild-type (WT) mice underwent electrical amygdala kindling. Compared with WT mice, Tg2576 mice had significantly lower afterdischarge threshold. Significantly fewer stimulations were required for the Tg2576 mice to reach the first class V seizure. Higher death rate was observed with Tg2576 mice in the kindling group. Both sham and kindled Tg2576 animals had increased levels of sprouting in the supragranular layer of the dentate gyrus compared with the WT counterparts. These findings support the "two-hit" hypothesis and represent a potentially novel research model to help better understand the relationship between AD pathology and epilepsy.