Radiology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    No Preview Available
    Normative retrobulbar measurements of the optic nerve using ultra high field magnetic resonance imaging
    Nguyen, BN ; Cleary, JO ; Glarin, R ; Kolbe, SC ; Moffat, BA ; Ordidge, RJ ; Bui, BV ; McKendrick, AM (Association for Research in Vision and Ophthalmology, 2019-07-01)
    Purpose : We exploit the improved spatial resolution and signal-to-noise gain of ultra high field (7T) magnetic resonance imaging (MRI) with a dedicated eye coil for more accurate morphometric measurements of the optic nerve ~2.5mm behind the globe. Methods : Coronal T2-weighted oblique images (TR=2000ms, TE=64ms, FOV=155mm, matrix=384 x 384, slice thickness=0.7mm, scan time=2’34”) through the optic nerve were obtained in 21 healthy adults (20-41 years, 11 emmetropes: +0.75 to -0.50D, 10 myopes: -4.5 to -12D) using a 7T Siemens Magnetom scanner (Erlangen, Germany) and 6-channel eye coil (MRI.TOOLS GmbH, Berlin, Germany). Horizontal and vertical outer diameter of the optic nerve, subarachnoid space (fluid gap) and optic sheath were measured by hand using biomedical imaging software (OsiriX, Pixmeo, Switzerland) (Figure). Significant motion artefacts were avoided with customised fixation and preparation techniques. Results : Horizontal and vertical measurements were similar so were averaged. Right and left eye diameters did not differ and were highly correlated (optic nerve: Pearson r=0.9, p<0.001; fluid gap: r=0.8, p<0.001; optic sheath: r=0.7, p<0.001); hence we report left eye data only. Optic nerve diameter (average of horizontal and vertical diameters) ranged from 2.8-4.1mm in emmetropes and 1.5-4.2mm in myopes and correlated with refractive error (Spearman r=0.46, p=0.04). Similarly, fluid gap diameter (emmetropes: 3.6-5.5mm, myopes: 2.5-5.6mm), but not optic sheath diameter (emmetropes: 4.5-6.8mm, myopes: 4.2-6.8mm), correlated with refractive error (r=0.47, p=0.03). Conclusions : Ultra high field MRI with thinner slices enables more accurate demarcation of the optic nerve, surrounding fluid/subarachnoid space and optic sheath without overlapping of neighbouring anatomy (minimal partial volume artefact). Our 7T MRI-derived normative measurements of optic nerve, fluid gap and sheath diameter are comparable with published reports in healthy observers obtained at conventional MRI magnetic fields (1.5-3T). Our findings suggest a trend for retrobulbar optic nerve and subarachnoid space, but not optic sheath, to be smaller in high myopes.
  • Item
    Thumbnail Image
    Extracting more for less: multi-echo MP2RAGE for simultaneous T-1-weighted imaging, T-1 mapping, R2*mapping, SWI, and QSM from a single acquisition
    Sun, H ; Cleary, JO ; Glarin, R ; Kolbe, SC ; Ordidge, RJ ; Moffat, BA ; Pike, GB (WILEY, 2019-09-10)
    PURPOSE: To demonstrate simultaneous T1 -weighted imaging, T1 mapping, R 2 ∗ mapping, SWI, and QSM from a single multi-echo (ME) MP2RAGE acquisition. METHODS: A single-echo (SE) MP2RAGE sequence at 7 tesla was extended to ME with 4 bipolar gradient echo readouts. T1 -weighted images and T1 maps calculated from individual echoes were combined using sum of squares and averaged, respectively. ME-combined SWI and associated minimum intensity projection images were generated with TE-adjusted homodyne filters. A QSM reconstruction pipeline was used, including a phase-offsets correction and coil combination method to properly combine the phase images from the 32 receiver channels. Measurements of susceptibility, R 2 ∗ , and T1 of brain tissue from ME-MP2RAGE were compared with those from standard ME-gradient echo and SE-MP2RAGE. RESULTS: The ME combined T1 -weighted, T1 map, SWI, and minimum intensity projection images showed increased SNRs compared to the SE results. The proposed coil combination method led to QSM results free of phase-singularity artifacts, which were present in the standard adaptive combination method. T1 -weighted, T1 , and susceptibility maps from ME-MP2RAGE were comparable to those obtained from SE-MP2RAGE and ME-gradient echo, whereas R 2 ∗ maps showed increased blurring and reduced SNR. T1 , R 2 ∗ , and susceptibility values of brain tissue from ME-MP2RAGE were consistent with those from SE-MP2RAGE and ME-gradient echo. CONCLUSION: High-resolution structural T1 weighted imaging, T1 mapping, R 2 ∗ mapping, SWI, and QSM can be extracted from a single 8.5-min ME-MP2RAGE acquisition using a customized reconstruction pipeline. This method can be applied to replace separate SE-MP2RAGE and ME-gradient echo acquisitions to significantly shorten total scan time.
  • Item
    Thumbnail Image
    Optic Nerve Diffusion Tensor Imaging after Acute Optic Neuritis Predicts Axonal and Visual Outcomes
    van der Walt, A ; Kolbe, SC ; Wang, YE ; Klistorner, A ; Shuey, N ; Ahmadi, G ; Paine, M ; Marriott, M ; Mitchell, P ; Egan, GF ; Butzkueven, H ; Kilpatrick, TJ ; Villoslada, P (PUBLIC LIBRARY SCIENCE, 2013-12-26)
    BACKGROUND: Early markers of axonal and clinical outcomes are required for early phase testing of putative neuroprotective therapies for multiple sclerosis (MS). OBJECTIVES: To assess whether early measurement of diffusion tensor imaging (DTI) parameters (axial and radial diffusivity) within the optic nerve during and after acute demyelinating optic neuritis (ON) could predict axonal (retinal nerve fibre layer thinning and multi-focal visual evoked potential amplitude reduction) or clinical (visual acuity and visual field loss) outcomes at 6 or 12 months. METHODS: Thirty-seven patients presenting with acute, unilateral ON were studied at baseline, one, three, six and 12 months using optic nerve DTI, clinical and paraclinical markers of axonal injury and clinical visual dysfunction. RESULTS: Affected nerve axial diffusivity (AD) was reduced at baseline, 1 and 3 months. Reduced 1-month AD correlated with retinal nerve fibre layer (RNFL) thinning at 6 (R=0.38, p=0.04) and 12 months (R=0.437, p=0.008) and VEP amplitude loss at 6 (R=0.414, p=0.019) and 12 months (R=0.484, p=0.003). AD reduction at three months correlated with high contrast visual acuity at 6 (ρ = -0.519, p = 0.001) and 12 months (ρ = -0.414, p=0.011). The time-course for AD reduction for each patient was modelled using a quadratic regression. AD normalised after a median of 18 weeks and longer normalisation times were associated with more pronounced RNFL thinning and mfVEP amplitude loss at 12 months. Affected nerve radial diffusivity (RD) was unchanged until three months, after which time it remained elevated. CONCLUSIONS: These results demonstrate that AD reduces during acute ON. One month AD reduction correlates with the extent of axonal loss and persistent AD reduction at 3 months predicts poorer visual outcomes. This suggests that acute ON therapies that normalise optic nerve AD by 3 months could also promote axon survival and improve visual outcomes.
  • Item
    Thumbnail Image
    Early imaging predictors of longer term multiple sclerosis risk and severity in acute optic neuritis
    Gajamange, S ; Stankovich, J ; Egan, G ; Kilpatrick, T ; Butzkueven, H ; Fielding, J ; van der Walt, A ; Kolbe, S (SAGE PUBLICATIONS INC, 2019-07-01)
    BACKGROUND: Biomarkers are urgently required for predicting the likely progression of multiple sclerosis (MS) at the earliest stages of the disease to aid in personalised therapy. OBJECTIVE: We aimed to examine early brain volumetric and microstructural changes and retinal nerve fibre layer thinning as predictors of longer term MS severity in patients with clinically isolated syndromes (CIS). METHODS: Lesion metrics, brain and regional atrophy, diffusion fractional anisotropy and retinal nerve fibre layer thickness were prospectively assessed in 36 patients with CIS over the first 12 months after presentation and compared with clinical outcomes at longer term follow-up [median (IQR) = 8.5 (7.8-8.9) years]. RESULTS: In total, 25 (69%) patients converted to MS and had greater baseline lesion volume (p = 0.008) and number (p = 0.03)than CIS patients. Over the initial 12 months, new lesions (p = 0.0001), retinal nerve fibre layer thinning (p = 0.04) and ventricular enlargement (p = 0.03) were greater in MS than CIS patients. In MS patients, final Expanded Disability Status Scale score correlated with retinal nerve fibre layer thinning over the first 12 months (ρ = -0.67, p = 0.001). CONCLUSIONS: Additional to lesion metrics, early measurements of fractional anisotropy and retinal nerve fibre layer thinning are informative about longer term clinical outcomes in CIS.
  • Item
    Thumbnail Image
    Functional correlates of cognitive dysfunction in clinically isolated syndromes
    Gajamange, S ; Shelton, A ; Clough, M ; White, O ; Fielding, J ; Kolbe, S ; Paul, F (PUBLIC LIBRARY SCIENCE, 2019-07-17)
    Cognitive dysfunction can be identified in patients with clinically isolated syndromes suggestive of multiple sclerosis using ocular motor testing. This study aimed to identify the functional neural correlates of cognitive dysfunction in patients with clinically isolated syndrome using MRI. Eighteen patients with clinically isolated syndrome and 17 healthy controls were recruited. Subjects underwent standard neurological and neuropsychological testing. Subjects also underwent functional MRI (fMRI) during a cognitive ocular motor task, involving pro-saccade (direct gaze towards target) and anti-saccade (direct gaze away from target) trials. Ocular motor performance variables (averaged response time and error rate) were calculated for each subject. Patients showed a trend towards a greater rate of anti-saccade errors (p = 0.09) compared to controls. Compared to controls, patients exhibited increased activation in the right postcentral, right supramarginal gyrus, and the right parietal operculum during the anti-saccade>pro-saccade contrast. This study demonstrated that changes in functional organisation of cognitive brain networks is associated with subtle cognitive changes in patients with clinically isolated syndrome.
  • Item
    Thumbnail Image
    Repeated mild traumatic brain injuries induce persistent changes in plasma protein and magnetic resonance imaging biomarkers in the rat
    Wright, DK ; Brady, RD ; Kamnaksh, A ; Trezise, J ; Sun, M ; McDonald, SJ ; Mychasiuk, R ; Kolbe, SC ; Law, M ; Johnston, LA ; O'Brien, TJ ; Agoston, DV ; Shultz, SR (Nature Publishing Group, 2019-10-10)
    A single mild traumatic brain injury (mTBI) typically causes only transient symptoms, but repeated mTBI (RmTBI) is associated with cumulative and chronic neurological abnormalities. Clinical management of mTBI is challenging due to the heterogeneous, subjective and transient nature of symptoms, and thus would be aided by objective biomarkers. Promising biomarkers including advanced magnetic resonance imaging (MRI) and plasma levels of select proteins were examined here in a rat model of RmTBI. Rats received either two mild fluid percussion or sham injuries administered five days apart. Rats underwent MRI and behavioral testing 1, 3, 5, 7, and 30 days after the second injury and blood samples were collected on days 1, 7, and 30. Structural and diffusion-weighted MRI revealed that RmTBI rats had abnormalities in the cortex and corpus callosum. Proteomic analysis of plasma found that RmTBI rats had abnormalities in markers indicating axonal and vascular injury, metabolic and mitochondrial dysfunction, and glial reactivity. These changes occurred in the presence of ongoing cognitive and sensorimotor deficits in the RmTBI rats. Our findings demonstrate that RmTBI can result in chronic neurological abnormalities, provide insight into potential contributing pathophysiological mechanisms, and supports the use of MRI and plasma protein measures as RmTBI biomarkers.
  • Item
    Thumbnail Image
    Novel Functional MRI Task for Studying the Neural Correlates of Upper Limb Tremor
    Boonstra, FMC ; Perera, T ; Noffs, G ; Marotta, C ; Vogel, AP ; Evans, AH ; Butzkueven, H ; Moffat, BA ; van der Walt, A ; Kolbe, SC (FRONTIERS MEDIA SA, 2018-07-02)
    Introduction: Tremor of the upper limbs is a disabling symptom that is present during several neurological disorders and is currently without treatment. Functional MRI (fMRI) is an essential tool to investigate the pathophysiology of tremor and aid the development of treatment options. However, no adequately or standardized protocols for fMRI exists at present. Here we present a novel, online available fMRI task that could be used to assess the in vivo pathology of tremor. Objective: This study aims to validate the tremor-evoking potential of the fMRI task in a small group of tremor patients outside the scanner and assess the reproducibility of the fMRI task related activation in healthy controls. Methods: Twelve HCs were scanned at two time points (baseline and after 6-weeks). There were two runs of multi-band fMRI and the tasks included a "brick-breaker" joystick game. The game consisted of three conditions designed to control for most of the activation related to performing the task by contrasting the conditions: WATCH (look at the game without moving joystick), MOVE (rhythmic left/right movement of joystick without game), and PLAY (playing the game). Task fMRI was analyzed using FSL FEAT to determine clusters of activation during the different conditions. Maximum activation within the clusters was used to assess the ability to control for task related activation and reproducibility. Four tremor patients have been included to test ecological and construct validity of the joystick task by assessing tremor frequencies captured by the joystick. Results: In HCs the game activated areas corresponding to motor, attention and visual areas. Most areas of activation by our game showed moderate to good reproducibility (intraclass correlation coefficient (ICC) 0.531-0.906) with only inferior parietal lobe activation showing poor reproducibility (ICC 0.446). Furthermore, the joystick captured significantly more tremulous movement in tremor patients compared to HCs (p = 0.01) during PLAY, but not during MOVE. Conclusion: Validation of our novel task confirmed tremor-evoking potential and reproducibility analyses yielded acceptable results to continue further investigations into the pathophysiology of tremor. The use of this technique in studies with tremor patient will no doubt provide significant insights into the treatment options.
  • Item
    No Preview Available
    Objective speech marker correlates with clinical scores in non-dysarthric MS
    Noffs, G ; Boonstra, F ; Kolbe, S ; Perera, T ; Shanahan, C ; Evans, A ; Butzkueven, H ; Vogel, A ; Van der Walt, A (SAGE PUBLICATIONS LTD, 2017-10-01)
  • Item
    No Preview Available
    Pathophysiology of MS tremor: an fMRI study
    Boonstra, FMC ; Noffs, G ; Perera, T ; Shanahan, CJ ; Vogel, AP ; Evans, A ; Butzkueven, H ; van der Walt, A ; Kolbe, SC (SAGE PUBLICATIONS LTD, 2017-10-01)
  • Item
    No Preview Available
    Subclinical speech signs correlate with MS disease severity and differentiates patients with and without clinical cerebellar dysfunction
    Noffs, G ; Boonstra, F ; Perera, T ; Kolbe, S ; Shanahan, C ; Evans, A ; Butzkueven, H ; Vogel, A ; van der Walt, A (SAGE PUBLICATIONS LTD, 2017-10-01)