Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    The potential "additive" thromboembolic risk of radiotherapy
    Alexander, M ; Sryjanen, R ; Ball, D ; MacManus, M ; Burbury, K (WILEY, 2019-06)
  • Item
    Thumbnail Image
    Lung cancer prognostic index: a risk score to predict overall survival after the diagnosis of non-small-cell lung cancer
    Alexander, M ; Wolfe, R ; Ball, D ; Conron, M ; Stirling, RG ; Solomon, B ; MacManus, M ; Officer, A ; Karnam, S ; Burbury, K ; Evans, SM (NATURE PUBLISHING GROUP, 2017-08-22)
    INTRODUCTION: Non-small-cell lung cancer outcomes are poor but heterogeneous, even within stage groups. To improve prognostic precision we aimed to develop and validate a simple prognostic model using patient and disease variables. METHODS: Prospective registry and study data were analysed using Cox proportional hazards regression to derive a prognostic model (hospital 1, n=695), which was subsequently tested (Harrell's c-statistic for discrimination and Cox-Snell residuals for calibration) in two independent validation cohorts (hospital 2, n=479 and hospital 3, n=284). RESULTS: The derived Lung Cancer Prognostic Index (LCPI) included stage, histology, mutation status, performance status, weight loss, smoking history, respiratory comorbidity, sex, and age. Two-year overall survival rates according to LCPI in the derivation and two validation cohorts, respectively, were 84, 77, and 68% (LCPI 1: score⩽9); 61, 61, and 42% (LCPI 2: score 10-13); 33, 32, and 14% (LCPI 3: score 14-16); 7, 16, and 5% (LCPI 4: score ⩾15). Discrimination (c-statistic) was 0.74 for the derivation cohort, 0.72 and 0.71 for the two validation cohorts. CONCLUSIONS: The LCPI contributes additional prognostic information, which may be used to counsel patients, guide trial eligibility or design, or standardise mortality risk for epidemiological analyses.
  • Item
    Thumbnail Image
    Dynamic Thromboembolic Risk Modelling to Target Appropriate Preventative Strategies for Patients with Non-Small Cell Lung Cancer
    Alexander, M ; Ball, D ; Solomon, B ; MacManus, M ; Manser, R ; Riedel, B ; Westerman, D ; Evans, SM ; Wolfe, R ; Burbury, K (MDPI, 2019-01)
    Prevention of cancer-associated thromboembolism (TE) remains a significant clinical challenge and priority world-wide safety initiative. In this prospective non-small cell lung cancer (NSCLC) cohort, longitudinal TE risk profiling (clinical and biomarker) was undertaken to develop risk stratification models for targeted TE prevention. These were compared with published models from Khorana, CATS, PROTECHT, CONKO, and CATS/MICA. The NSCLC cohort of 129 patients, median follow-up 22.0 months (range 5.6-31.3), demonstrated a hypercoagulable profile in >75% patients and TE incidence of 19%. High TE risk patients were those receiving chemotherapy with baseline fibrinogen ≥ 4 g/L and d-dimer ≥ 0.5 mg/L; or baseline d-dimer ≥ 1.5 mg/L; or month 1 d-dimer ≥ 1.5 mg/L. The model predicted TE with 100% sensitivity and 34% specificity (c-index 0.67), with TE incidence 27% vs. 0% for high vs. low-risk. A comparison using the Khorana, PROTECHT, and CONKO methods were not discriminatory; TE incidence 17⁻25% vs. 14⁻19% for high vs. low-risk (c-index 0.51⁻0.59). Continuous d-dimer (CATS/MICA model) was also not predictive of TE. Independent of tumour stage, high TE risk was associated with cancer progression (HR 1.9, p = 0.01) and mortality (HR 2.2, p = 0.02). The model was tested for scalability in a prospective gastrointestinal cancer cohort with equipotency demonstrated; 80% sensitivity and 39% specificity. This proposed TE risk prediction model is simple, practical, potent and can be used in the clinic for real-time, decision-making for targeted thromboprophylaxis. Validation in a multicentre randomised interventional study is underway (ACTRN12618000811202).