Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 14
  • Item
    Thumbnail Image
    Acute radiation oesophagitis associated with 2-deoxy-2-[18F]fluoro-d-glucose uptake on positron emission tomography/CT during chemo-radiation therapy in patients with non-small-cell lung cancer
    Everitt, S ; Callahan, J ; Obeid, E ; Hicks, RJ ; Mac Manus, M ; Ball, D (WILEY, 2017-10)
    INTRODUCTION: Acute radiation oesophagitis (ARO) is frequently experienced by patients receiving concurrent chemo-radiation therapy (cCRT) for non-small-cell lung cancer (NSCLC). We investigated ARO symptoms (CTCAE v3.0), radiation dose and oesophageal FDG PET/CT uptake. METHOD: Candidates received cCRT (60 Gy, 2 Gy/fx) and sequential FDG PET/CT (baseline FDG0 , FDGwk2 and FDGwk4 ). Mean and maximum standardized uptake value (SUVmean and SUVmax) and radiation dose (Omean and Omax ) were calculated within the whole oesophagus and seven sub-regions (5-60 Gy). RESULTS: Forty-four patients underwent FDG0 and FDGwk2 , and 41 (93%) received FDGwk4 , resulting in 129 PET/CT scans for analysis. Of 29 (66%) patients with ≥ grade 2 ARO, SUVmax (mean ± SD) increased from FDG0 to FDGwk4 (3.06 ± 0.69 to 3.83 ± 1.27, P = 0.0019) and FDGwk2 to FDGwk4 (3.10 ± 0.75 to 3.83 ± 1.27, P = 0.0046). Radiation dose (mean ± SD) was higher in grade ≥2 patients; Omean (47.5 ± 20 vs 53.9 ± 10.2, P = 0.0061), Omax (13.7 ± 9.6 vs 20.1 ± 10.6, P = 0.0009) and V40 Gy (8.0 ± 8.2 vs 11.9 ± 7.3, P = 0.0185). CONCLUSIONS: FDGwk4 SUVmax and radiation dose were associated with ≥ grade 2 ARO. Compared to subjective assessments, future interim FDG PET/CT acquired for disease response assessment may also be utilized to objectively characterize ARO severity and image-guided oesophageal dose constraints.
  • Item
    Thumbnail Image
    The potential "additive" thromboembolic risk of radiotherapy
    Alexander, M ; Sryjanen, R ; Ball, D ; MacManus, M ; Burbury, K (WILEY, 2019-06)
  • Item
    Thumbnail Image
    Survival difference according to mutation status in a prospective cohort study of Australian patients with metastatic non-small-cell lung carcinoma
    Tan, L ; Alexander, M ; Officer, A ; MacManus, M ; Mileshkin, L ; Jennens, R ; Herath, D ; de Boer, R ; Fox, SB ; Ball, D ; Solomon, B (WILEY, 2018-01)
    BACKGROUND: Non-small-cell lung cancer (NSCLC) is a heterogeneous disease comprising not only different histological subtypes but also different molecular subtypes. AIM: To describe the frequency of oncogenic drivers in patients with metastatic NSCLC, the proportion of patients tested and survival difference according to mutation status in a single-institution study. METHODS: Metastatic NSCLC patients enrolled in a prospective Thoracic Malignancies Cohort Study between July 2012 and August 2016 were selected. Patients underwent molecular testing for epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK) gene rearrangements, Kirsten rat sarcoma (KRAS), B-Raf proto-oncogene (BRAF) mutations and ROS1 gene rearrangements. Survival was calculated using the Kaplan-Meier method for groups of interest, and comparisons were made using the log-rank test. RESULTS: A total of 392 patients were included, 43% of whom were female with median age of 64 years (28-92). Of 296 patients tested, 172 patients (58%) were positive for an oncogenic driver: 81 patients (27%) were EGFR positive, 25 patients (9%) were ALK positive, 57 patients (19%) had KRAS mutation and 9 patients (3%) were ROS1 or BRAF positive. Patients with an actionable mutation (EGFR/ALK) had a survival advantage when compared with patients who were mutation negative (hazard ratio (HR) 0.49; 95% confidence interval (CI) 0.33-0.71; P < 0.01). Survival difference between mutation negative and mutation status unknown was not statistically significant when adjusted for confounding factors in a multivariate analysis (HR 1.29; 95% CI 0.97-1.78, P = 0.08). CONCLUSION: In this prospective cohort, the presence of an actionable mutation was the strongest predictor of overall survival. These results confirm the importance of molecular testing and suggest likely survival benefit of identification and treatment of actionable oncogenes.
  • Item
    Thumbnail Image
    A Deep Learning Model to Automate Skeletal Muscle Area Measurement on Computed Tomography Images
    Amarasinghe, KC ; Lopes, J ; Beraldo, J ; Kiss, N ; Bucknell, N ; Everitt, S ; Jackson, P ; Litchfield, C ; Denehy, L ; Blyth, BJ ; Siva, S ; MacManus, M ; Ball, D ; Li, J ; Hardcastle, N (FRONTIERS MEDIA SA, 2021-05-07)
    BACKGROUND: Muscle wasting (Sarcopenia) is associated with poor outcomes in cancer patients. Early identification of sarcopenia can facilitate nutritional and exercise intervention. Cross-sectional skeletal muscle (SM) area at the third lumbar vertebra (L3) slice of a computed tomography (CT) image is increasingly used to assess body composition and calculate SM index (SMI), a validated surrogate marker for sarcopenia in cancer. Manual segmentation of SM requires multiple steps, which limits use in routine clinical practice. This project aims to develop an automatic method to segment L3 muscle in CT scans. METHODS: Attenuation correction CTs from full body PET-CT scans from patients enrolled in two prospective trials were used. The training set consisted of 66 non-small cell lung cancer (NSCLC) patients who underwent curative intent radiotherapy. An additional 42 NSCLC patients prescribed curative intent chemo-radiotherapy from a second trial were used for testing. Each patient had multiple CT scans taken at different time points prior to and post- treatment (147 CTs in the training and validation set and 116 CTs in the independent testing set). Skeletal muscle at L3 vertebra was manually segmented by two observers, according to the Alberta protocol to serve as ground truth labels. This included 40 images segmented by both observers to measure inter-observer variation. An ensemble of 2.5D fully convolutional neural networks (U-Nets) was used to perform the segmentation. The final layer of U-Net produced the binary classification of the pixels into muscle and non-muscle area. The model performance was calculated using Dice score and absolute percentage error (APE) in skeletal muscle area between manual and automated contours. RESULTS: We trained five 2.5D U-Nets using 5-fold cross validation and used them to predict the contours in the testing set. The model achieved a mean Dice score of 0.92 and an APE of 3.1% on the independent testing set. This was similar to inter-observer variation of 0.96 and 2.9% for mean Dice and APE respectively. We further quantified the performance of sarcopenia classification using computer generated skeletal muscle area. To meet a clinical diagnosis of sarcopenia based on Alberta protocol the model achieved a sensitivity of 84% and a specificity of 95%. CONCLUSIONS: This work demonstrates an automated method for accurate and reproducible segmentation of skeletal muscle area at L3. This is an efficient tool for large scale or routine computation of skeletal muscle area in cancer patients which may have applications on low quality CTs acquired as part of PET/CT studies for staging and surveillance of patients with cancer.
  • Item
    Thumbnail Image
    Single-arm prospective interventional study assessing feasibility of using gallium-68 ventilation and perfusion PET/CT to avoid functional lung in patients with stage III non-small cell lung cancer
    Bucknell, N ; Hardcastle, N ; Jackson, P ; Hofman, M ; Callahan, J ; Eu, P ; Iravani, A ; Lawrence, R ; Martin, O ; Bressel, M ; Woon, B ; Blyth, B ; MacManus, M ; Byrne, K ; Steinfort, D ; Kron, T ; Hanna, G ; Ball, D ; Siva, S (BMJ PUBLISHING GROUP, 2020)
    BACKGROUND: In the curative-intent treatment of locally advanced lung cancer, significant morbidity and mortality can result from thoracic radiation therapy. Symptomatic radiation pneumonitis occurs in one in three patients and can lead to radiation-induced fibrosis. Local failure occurs in one in three patients due to the lungs being a dose-limiting organ, conventionally restricting tumour doses to around 60 Gy. Functional lung imaging using positron emission tomography (PET)/CT provides a geographic map of regional lung function and preclinical studies suggest this enables personalised lung radiotherapy. This map of lung function can be integrated into Volumetric Modulated Arc Therapy (VMAT) radiotherapy planning systems, enabling conformal avoidance of highly functioning regions of lung, thereby facilitating increased doses to tumour while reducing normal tissue doses. METHODS AND ANALYSIS: This prospective interventional study will investigate the use of ventilation and perfusion PET/CT to identify highly functioning lung volumes and avoidance of these using VMAT planning. This single-arm trial will be conducted across two large public teaching hospitals in Australia. Twenty patients with stage III non-small cell lung cancer will be recruited. All patients enrolled will receive dose-escalated (69 Gy) functional avoidance radiation therapy. The primary endpoint is feasibility with this achieved if ≥15 out of 20 patients meet pre-defined feasibility criteria. Patients will be followed for 12 months post-treatment with serial imaging, biomarkers, toxicity assessment and quality of life assessment. DISCUSSION: Using advanced techniques such as VMAT functionally adapted radiation therapy may enable safe moderate dose escalation with an aim of improving local control and concurrently decreasing treatment related toxicity. If this technique is proven feasible, it will inform the design of a prospective randomised trial to assess the clinical benefits of functional lung avoidance radiation therapy. ETHICS AND DISSEMINATION: This study was approved by the Peter MacCallum Human Research Ethics Committee. All participants will provide written informed consent. Results will be disseminated via publications. TRIALS REGISTRATION NUMBER: NCT03569072; Pre-results.
  • Item
    No Preview Available
    Absence of a Relationship between Tumor 18F-fluorodeoxyglucose Standardized Uptake Value and Survival in Patients Treated with Definitive Radiotherapy for Non-Small-Cell Lung Cancer
    Lin, M-Y ; Wu, M ; Brennan, S ; Campeau, M-P ; Binns, DS ; MacManus, M ; Solomon, B ; Hicks, RJ ; Fisher, RJ ; Ball, DL (LIPPINCOTT WILLIAMS & WILKINS, 2014-03)
    INTRODUCTION: A recent meta-analysis suggested that patients with non-small-cell lung cancer (NSCLC) whose primary tumors have a higher standardized uptake value (SUV) derived from F-fluorodeoxyglucose positron emission tomography (PET) have a worse prognosis in comparison with those with tumors with lower values. However, previous analyses have had methodological weaknesses. Furthermore, the prognostic significance over the full range of SUV values in patients treated nonsurgically remains unclear. The aim of this retrospective study was to investigate the relationship between survival and maximum SUV (SUV(max)) analyzed as a continuous variable, in patients with NSCLC, staged using PET/computed tomography (CT) and treated with radiotherapy with or without chemotherapy. METHODS: Eligible patients had a histological diagnosis of NSCLC, were treated with radical radiotherapy with or without chemotherapy as their primary treatment, and had pretreatment PET/CT scans. SUV(max), defined as the maximum pixel SUV value retrieved from the primary tumor, was analyzed primarily as a continuous variable for overall survival. RESULTS: Eighty-eight patients met eligibility criteria: stage I, 19; stage II, 10; and stage III, 59. Median SUV(max) was 15.0 (range, 2.5-56). Higher stage was associated with higher SUV(max) values (p = 0.048). In univariate analysis, there was no evidence of a prognostic effect of SUV(max) (hazard ratio per doubling = 0.83; 95% confidence interval, 0.62-1.11; p = 0.22). Analyzing SUV(max) as a dichotomous variable (median cut point = 15.0), the hazard ratio (high: low) for risk of death was 0.71, with p = 0.18 (95% confidence interval, 0.44-1.15). CONCLUSIONS: In this cohort of patients, increasing SUV(max) derived from F-fluorodeoxyglucose-PET/CT was associated with increasing tumor, node, metastasis (TNM) stage. We found no evidence of an association of increasing SUV(max) with a shorter survival. Previous reports of an association between prognosis and SUV(max) may partly be the result of methodological differences between this study and previous reports and an association between stage and SUV(max).
  • Item
    Thumbnail Image
    A phase I trial of high-dose palliative radiotherapy plus concurrent weekly Vinorelbine and Cisplatin in patients with locally advanced and metastatic NSCLC
    Michael, M ; Wirth, A ; Ball, DL ; MacManus, M ; Rischin, D ; Mileshkin, L ; Solomon, B ; McKendrick, J ; Milner, AD (NATURE PUBLISHING GROUP, 2005-09-19)
    The role of concurrent chemoradiotherapy (CRT) in patients with non-small-cell lung cancer (NSCLC) unsuitable for radical therapy but who require locoregional treatment has not been defined. The aims of this phase I trial were thus to develop a novel regimen of weekly chemotherapy concurrent with high-dose palliative RT (40 Gy/20 fractions) and assess its tolerability, objective and symptomatic response rates. Eligible patients had stage I-IIIB NSCLC unsuitable for radical RT or limited stage IV disease, ECOG PS
  • Item
    Thumbnail Image
    Association between radiation pneumonitis and tumor response in patients with NSCLC treated with chemoradiation
    MacManus, MP ; Ball, D ; Hicks, RJ (BIOMED CENTRAL LTD, 2014-10-16)
    Dang and colleagues recently reported in the journal that tumor response to definitive chemoradiation, as assessed using the RECIST criteria, and the risk of radiation pneumonitis were positively correlated in patients with non-small cell lung cancer (NSCLC). We had previously reported similar findings in a study that used positron tomography both to measure tumor response and to assess normal tissue toxicity in patients treated with chemoradiation for NSCLC. Taken together these reports suggest that radiosensitivity of normal tissues and tumors may be strongly linked in a proportion of patients with lung cancer.
  • Item
    Thumbnail Image
    Spleen Volume Variation in Patients with Locally Advanced Non-Small Cell Lung Cancer Receiving Platinum-Based Chemo-Radiotherapy
    Wen, SW ; Everitt, SJ ; Bedo, J ; Chabrot, M ; Ball, DL ; Solomon, B ; MacManus, M ; Hicks, RJ ; Moeller, A ; Leimgruber, A ; St-Pierre, Y (PUBLIC LIBRARY SCIENCE, 2015-11-24)
    There is renewed interest in the immune regulatory role of the spleen in oncology. To date, very few studies have examined macroscopic variations of splenic volume in the setting of cancer, prior to or during therapy, especially in humans. Changes in splenic volume may be associated with changes in splenic function. The purpose of this study was to investigate variations in spleen volume in NSCLC patients during chemo-radiotherapy. Sixty patients with stage I-IIIB NSCLC underwent radiotherapy (60 Gy/30 fractions) for six weeks with concomitant carboplatin/paclitaxel (Ca/P; n = 32) or cisplatin/etoposide (Ci/E; n = 28). A baseline PET/CT scan was performed within 2 weeks prior to treatment and during Weeks 2 and 4 of chemo-radiotherapy. Spleen volume was measured by contouring all CT slices. Significant macroscopic changes in splenic volume occurred early after the commencement of treatment. A significant decrease in spleen volume was observed for 66% of Ca/P and 79% of Ci/E patients between baseline and Week 2. Spleen volume was decreased by 14.2% for Ca/P (p<0.001) and 19.3% for Ci/E (p<0.001) patients. By Week 4, spleen volume was still significantly decreased for Ca/P patients compared to baseline, while for Ci/E patients, spleen volume returned to above baseline levels. This is the first report demonstrating macroscopic changes in the spleen in NSCLC patients undergoing radical chemo-radiotherapy that can be visualized by non-invasive imaging.
  • Item
    Thumbnail Image
    Lung cancer prognostic index: a risk score to predict overall survival after the diagnosis of non-small-cell lung cancer
    Alexander, M ; Wolfe, R ; Ball, D ; Conron, M ; Stirling, RG ; Solomon, B ; MacManus, M ; Officer, A ; Karnam, S ; Burbury, K ; Evans, SM (NATURE PUBLISHING GROUP, 2017-08-22)
    INTRODUCTION: Non-small-cell lung cancer outcomes are poor but heterogeneous, even within stage groups. To improve prognostic precision we aimed to develop and validate a simple prognostic model using patient and disease variables. METHODS: Prospective registry and study data were analysed using Cox proportional hazards regression to derive a prognostic model (hospital 1, n=695), which was subsequently tested (Harrell's c-statistic for discrimination and Cox-Snell residuals for calibration) in two independent validation cohorts (hospital 2, n=479 and hospital 3, n=284). RESULTS: The derived Lung Cancer Prognostic Index (LCPI) included stage, histology, mutation status, performance status, weight loss, smoking history, respiratory comorbidity, sex, and age. Two-year overall survival rates according to LCPI in the derivation and two validation cohorts, respectively, were 84, 77, and 68% (LCPI 1: score⩽9); 61, 61, and 42% (LCPI 2: score 10-13); 33, 32, and 14% (LCPI 3: score 14-16); 7, 16, and 5% (LCPI 4: score ⩾15). Discrimination (c-statistic) was 0.74 for the derivation cohort, 0.72 and 0.71 for the two validation cohorts. CONCLUSIONS: The LCPI contributes additional prognostic information, which may be used to counsel patients, guide trial eligibility or design, or standardise mortality risk for epidemiological analyses.