Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Chemotherapy weakly contributes to predicted neoantigen expression in ovarian cancer
    O'Donnell, T ; Christie, EL ; Ahuja, A ; Buros, J ; Aksoy, BA ; Bowtell, DDL ; Snyder, A ; Hammerbacher, J (BMC, 2018-01-22)
    BACKGROUND: Patients with highly mutated tumors, such as melanoma or smoking-related lung cancer, have higher rates of response to immune checkpoint blockade therapy, perhaps due to increased neoantigen expression. Many chemotherapies including platinum compounds are known to be mutagenic, but the impact of standard treatment protocols on mutational burden and resulting neoantigen expression in most human cancers is unknown. METHODS: We sought to quantify the effect of chemotherapy treatment on computationally predicted neoantigen expression for high grade serous ovarian carcinoma patients enrolled in the Australian Ovarian Cancer Study. In this series, 35 of 114 samples were collected after exposure to chemotherapy; 14 are matched with an untreated sample from the same patient. Our approach integrates whole genome and RNA sequencing of bulk tumor samples with class I MHC binding prediction and mutational signatures extracted from studies of chemotherapy-exposed Caenorhabditis elegans and Gallus gallus cells. We additionally investigated the relationship between neoantigens, tumor infiltrating immune cells estimated from RNA-seq with CIBERSORT, and patient survival. RESULTS: Greater neoantigen burden and CD8+ T cell infiltration in primary, pre-treatment samples were independently associated with improved survival. Relapse samples collected after chemotherapy harbored a median of 78% more expressed neoantigens than untreated primary samples, a figure that combines the effects of chemotherapy and other processes operative during relapse. The contribution from chemotherapy-associated signatures was small, accounting for a mean of 5% (range 0-16) of the expressed neoantigen burden in relapse samples. In both treated and untreated samples, most neoantigens were attributed to COSMIC Signature (3), associated with BRCA disruption, Signature (1), associated with a slow mutagenic process active in healthy tissue, and Signature (8), of unknown etiology. CONCLUSION: Relapsed ovarian cancers harbor more predicted neoantigens than primary tumors, but the increase is due to pre-existing mutational processes, not mutagenesis from chemotherapy.
  • Item
    Thumbnail Image
    Ovarian Carcinoma-Associated Mesenchymal Stem Cells Arise from Tissue-Specific Normal Stroma
    Coffman, LG ; Pearson, AT ; Frisbie, LG ; Freeman, Z ; Christie, E ; Bowtell, DD ; Buckanovich, RJ (WILEY, 2019-02)
    Carcinoma-associated mesenchymal stem cells (CA-MSCs) are critical stromal progenitor cells within the tumor microenvironment (TME). We previously demonstrated that CA-MSCs differentially express bone morphogenetic protein family members, promote tumor cell growth, increase cancer "stemness," and chemotherapy resistance. Here, we use RNA sequencing of normal omental MSCs and ovarian CA-MSCs to demonstrate global changes in CA-MSC gene expression. Using these expression profiles, we create a unique predictive algorithm to classify CA-MSCs. Our classifier accurately distinguishes normal omental, ovary, and bone marrow MSCs from ovarian cancer CA-MSCs. Suggesting broad applicability, the model correctly classifies pancreatic and endometrial cancer CA-MSCs and distinguishes cancer associated fibroblasts from CA-MSCs. Using this classifier, we definitively demonstrate ovarian CA-MSCs arise from tumor mediated reprograming of local tissue MSCs. Although cancer cells alone cannot induce a CA-MSC phenotype, the in vivo ovarian TME can reprogram omental or ovary MSCs to protumorigenic CA-MSCs (classifier score of >0.96). In vitro studies suggest that both tumor secreted factors and hypoxia are critical to induce the CA-MSC phenotype. Interestingly, although the breast cancer TME can reprogram bone marrow MSCs into CA-MSCs, the ovarian TME cannot, demonstrating for the first time that tumor mediated CA-MSC conversion is tissue and cancer type dependent. Together these findings (a) provide a critical tool to define CA-MSCs and (b) highlight cancer cell influence on distinct normal tissues providing powerful insights into the mechanisms underlying cancer specific metastatic niche formation. Stem Cells 2019;37:257-269.
  • Item
    Thumbnail Image
    Multiple ABCB1 transcriptional fusions in drug resistant high-grade serous ovarian and breast cancer
    Christie, EL ; Pattnaik, S ; Beach, J ; Copeland, A ; Rashoo, N ; Fereday, S ; Hendley, J ; Alsop, K ; Brady, SL ; Lamb, G ; Pandey, A ; deFazio, A ; Thorne, H ; Bild, A ; Bowtell, DDL (NATURE PUBLISHING GROUP, 2019-03-20)
    ABCB1 encodes Multidrug Resistance protein (MDR1), an ATP-binding cassette member involved in the cellular efflux of chemotherapeutic drugs. Here we report that ovarian and breast samples from chemotherapy treated patients are positive for multiple transcriptional fusions involving ABCB1, placing it under the control of a strong promoter while leaving its open reading frame intact. We identified 15 different transcriptional fusion partners involving ABCB1, as well as patients with multiple distinct fusion events. The partner gene selected depended on its structure, promoter strength, and chromosomal proximity to ABCB1. Fusion positivity was strongly associated with the number of lines of MDR1-substrate chemotherapy given. MDR1 inhibition in a fusion positive ovarian cancer cell line increased sensitivity to paclitaxel more than 50-fold. Convergent evolution of ABCB1 fusion is therefore frequent in chemotherapy resistant recurrent ovarian cancer. As most currently approved PARP inhibitors (PARPi) are MDR1 substrates, prior chemotherapy may precondition resistance to PARPi.