Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 29
  • Item
    No Preview Available
    Evolution of core archetypal phenotypes in progressive high grade serous ovarian cancer
    Nath, A ; Cosgrove, PA ; Mirsafian, H ; Christie, EL ; Pflieger, L ; Copeland, B ; Majumdar, S ; Cristea, MC ; Han, ES ; Lee, SJ ; Wang, EW ; Fereday, S ; Traficante, N ; Salgia, R ; Werner, T ; Cohen, AL ; Moos, P ; Chang, JT ; Bowtell, DDL ; Bild, AH (NATURE PORTFOLIO, 2021-05-24)
    The evolution of resistance in high-grade serous ovarian cancer (HGSOC) cells following chemotherapy is only partially understood. To understand the selection of factors driving heterogeneity before and through adaptation to treatment, we profile single-cell RNA-sequencing (scRNA-seq) transcriptomes of HGSOC tumors collected longitudinally during therapy. We analyze scRNA-seq data from two independent patient cohorts to reveal that HGSOC is driven by three archetypal phenotypes, defined as oncogenic states that describe the majority of the transcriptome variation. Using a multi-task learning approach to identify the biological tasks of each archetype, we identify metabolism and proliferation, cellular defense response, and DNA repair signaling as consistent cell states found across patients. Our analysis demonstrates a shift in favor of the metabolism and proliferation archetype versus cellular defense response archetype in cancer cells that received multiple lines of treatment. While archetypes are not consistently associated with specific whole-genome driver mutations, they are closely associated with subclonal populations at the single-cell level, indicating that subclones within a tumor often specialize in unique biological tasks. Our study reveals the core archetypes found in progressive HGSOC and shows consistent enrichment of subclones with the metabolism and proliferation archetype as resistance is acquired to multiple lines of therapy.
  • Item
    Thumbnail Image
    Going to extremes: determinants of extraordinary response and survival in patients with cancer
    Saner, FAM ; Herschtal, A ; Nelson, BH ; deFazio, A ; Goode, EL ; Ramus, SJ ; Pandey, A ; Beach, JA ; Fereday, S ; Berchuck, A ; Lheureux, S ; Pearce, CL ; Pharoah, PD ; Pike, MC ; Garsed, DW ; Bowtell, DDL (NATURE PUBLISHING GROUP, 2019-06)
    Research into factors affecting treatment response or survival in patients with cancer frequently involves cohorts that span the most common range of clinical outcomes, as such patients are most readily available for study. However, attention has turned to highly unusual patients who have exceptionally favourable or atypically poor responses to treatment and/or overall survival, with the expectation that patients at the extremes may provide insights that could ultimately improve the outcome of individuals with more typical disease trajectories. While clinicians can often recount surprising patients whose clinical journey was very unusual, given known clinical characteristics and prognostic indicators, there is a lack of consensus among researchers on how best to define exceptional patients, and little has been proposed for the optimal design of studies to identify factors that dictate unusual outcome. In this Opinion article, we review different approaches to identifying exceptional patients with cancer and possible study designs to investigate extraordinary clinical outcomes. We discuss pitfalls with finding these rare patients, including challenges associated with accrual of patients across different treatment centres and time periods. We describe recent molecular and immunological factors that have been identified as contributing to unusual patient outcome and make recommendations for future studies on these intriguing patients.
  • Item
    Thumbnail Image
    Evolution of core archetypal phenotypes in progressive high grade serous ovarian cancer.
    Nath, A ; Cosgrove, P ; Copeland, B ; Mirsafian, H ; Christie, E ; Pflieger, L ; Majumdar, S ; Cristea, M ; Han, E ; Lee, S ; Wang, E ; Fereday, S ; Traficante, N ; Salgia, R ; Werner, T ; Cohen, A ; Moos, P ; Chang, J ; Bowtell, D ; Bild, A (AMER ASSOC CANCER RESEARCH, 2021-07-01)
    Abstract The evolution of resistance in high-grade serous ovarian cancer (HGSOC) cells following chemotherapy is only partially understood. To uncover phenotypic changes associated with chemotherapy resistance, we profiled single-cell RNA-sequencing (scRNA-seq) transcriptomes of HGSOC tumors collected longitudinally during patient treatment. Analysis of scRNA-seq data from two independent patient cohorts revealed that HGSOC is driven by three core archetypal phenotypes, defined as oncogenic tasks that describe the majority of the transcriptome variation. A multi-task learning approach to identify the biological tasks of each archetype identified metabolism and proliferation, cellular defense response, and DNA repair signaling. The metabolism and proliferation archetype evolved during treatment and was enriched in cancer cells from patients that received multiple-lines of treatment and had elevated tumor burden indicated by CA-125 levels. The emergence of archetypes was not consistently associated with specific whole-genome driver mutations. However, archetypes were closely associated with subclonal populations at the single-cell level, indicating that subclones within a tumor often specialize in unique biological tasks. Our study reveals the core archetypes found in progressive HGSOC and shows consistent enrichment of subclones with the metabolism archetype as resistance is acquired to multiple lines of therapy. Citation Format: Aritro Nath, Patrick Cosgrove, Benjamin Copeland, Hoda Mirsafian, Elizabeth Christie, Lance Pflieger, Sumana Majumdar, Mihaela Cristea, Ernest Han, Stephen Lee, Edward Wang, Sian Fereday, Nadia Traficante, Ravi Salgia, Theresa Werner, Adam Cohen, Phillip Moos, Jeffrey Chang, David Bowtell, Andrea Bild. Evolution of core archetypal phenotypes in progressive high grade serous ovarian cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 3141.
  • Item
    Thumbnail Image
    Therapeutic options for mucinous ovarian carcinoma
    Gorringe, KL ; Cheasley, D ; Wakefield, MJ ; Ryland, GL ; Allan, PE ; Alsop, K ; Amarasinghe, KC ; Ananda, S ; Bowtell, DDL ; Christie, M ; Chiew, Y-E ; Churchman, M ; DeFazio, A ; Fereday, S ; Gilks, CB ; Gourley, C ; Hadley, AM ; Hendley, J ; Hunter, SM ; Kaufmann, SH ; Kennedy, CJ ; Kobel, M ; Le Page, C ; Li, J ; Lupat, R ; McNally, OM ; McAlpine, JN ; Pyman, J ; Rowley, SM ; Salazar, C ; Saunders, H ; Semple, T ; Stephens, AN ; Thio, N ; Torres, MC ; Traficante, N ; Zethoven, M ; Antill, YC ; Campbell, IG ; Scott, CL (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2020-03)
    OBJECTIVE: Mucinous ovarian carcinoma (MOC) is an uncommon ovarian cancer histotype that responds poorly to conventional chemotherapy regimens. Although long overall survival outcomes can occur with early detection and optimal surgical resection, recurrent and advanced disease are associated with extremely poor survival. There are no current guidelines specifically for the systemic management of recurrent MOC. We analyzed data from a large cohort of women with MOC to evaluate the potential for clinical utility from a range of systemic agents. METHODS: We analyzed gene copy number (n = 191) and DNA sequencing data (n = 184) from primary MOC to evaluate signatures of mismatch repair deficiency and homologous recombination deficiency, and other genetic events. Immunohistochemistry data were collated for ER, CK7, CK20, CDX2, HER2, PAX8 and p16 (n = 117-166). RESULTS: Molecular aberrations noted in MOC that suggest a match with current targeted therapies include amplification of ERBB2 (26.7%) and BRAF mutation (9%). Observed genetic events that suggest potential efficacy for agents currently in clinical trials include: KRAS/NRAS mutations (66%), TP53 missense mutation (49%), RNF43 mutation (11%), ARID1A mutation (10%), and PIK3CA/PTEN mutation (9%). Therapies exploiting homologous recombination deficiency (HRD) may not be effective in MOC, as only 1/191 had a high HRD score. Mismatch repair deficiency was similarly rare (1/184). CONCLUSIONS: Although genetically diverse, MOC has several potential therapeutic targets. Importantly, the lack of response to platinum-based therapy observed clinically corresponds to the lack of a genomic signature associated with HRD, and MOC are thus also unlikely to respond to PARP inhibition.
  • Item
    Thumbnail Image
    Association of p16 expression with prognosis varies across ovarian carcinoma histotypes: an Ovarian Tumor Tissue Analysis consortium study
    Rambau, PF ; Vierkant, RA ; Intermaggio, MP ; Kelemen, LE ; Goodman, MT ; Herpel, E ; Pharoah, PD ; Kommoss, S ; Jimenez-Linan, M ; Karlan, BY ; Gentry-Maharaj, A ; Menon, U ; Polo, SH ; Candido dos Reis, FJ ; Doherty, JA ; Gayther, SA ; Sharma, R ; Larson, MC ; Harnett, PR ; Hatfield, E ; de Andrade, JM ; Nelson, GS ; Steed, H ; Schildkraut, JM ; Carney, ME ; Hogdall, E ; Whittemore, AS ; Widschwendter, M ; Kennedy, CJ ; Wang, F ; Wang, Q ; Wang, C ; Armasu, SM ; Daley, F ; Coulson, P ; Jones, ME ; Anglesio, MS ; Chow, C ; de Fazio, A ; Garcia-Closas, M ; Brucker, SY ; Cybulski, C ; Harris, HR ; Hartkopf, AD ; Huzarski, T ; Jensen, A ; Lubinski, J ; Oszurek, O ; Benitez, J ; Mina, F ; Staebler, A ; Taran, FA ; Pasternak, J ; Talhouk, A ; Rossing, MA ; Hendley, J ; Edwards, RP ; Fereday, S ; Modugno, F ; Ness, RB ; Sieh, W ; El-Bahrawy, MA ; Winham, SJ ; Lester, J ; Kjaer, SK ; Gronwald, J ; Sinn, P ; Fasching, PA ; Chang-Claude, J ; Moysich, KB ; Bowtell, DD ; Hernandez, BY ; Luk, H ; Behrens, S ; Shah, M ; Jung, A ; Ghatage, P ; Alsop, J ; Alsop, K ; Garcia-Donas, J ; Thompson, PJ ; Swerdlow, AJ ; Karpinskyj, C ; Cazorla-Jimenez, A ; Garcia, MJ ; Deen, S ; Wilkens, LR ; Palacios, J ; Berchuck, A ; Koziak, JM ; Brenton, JD ; Cook, LS ; Goode, EL ; Huntsman, DG ; Ramus, SJ ; Koebel, M (WILEY, 2018-10)
    We aimed to validate the prognostic association of p16 expression in ovarian high-grade serous carcinomas (HGSC) and to explore it in other ovarian carcinoma histotypes. p16 protein expression was assessed by clinical-grade immunohistochemistry in 6525 ovarian carcinomas including 4334 HGSC using tissue microarrays from 24 studies participating in the Ovarian Tumor Tissue Analysis consortium. p16 expression patterns were interpreted as abnormal (either overexpression referred to as block expression or absence) or normal (heterogeneous). CDKN2A (which encodes p16) mRNA expression was also analyzed in a subset (n = 2280) mostly representing HGSC (n = 2010). Association of p16 expression with overall survival (OS) was determined within histotypes as was CDKN2A expression for HGSC only. p16 block expression was most frequent in HGSC (56%) but neither protein nor mRNA expression was associated with OS. However, relative to heterogeneous expression, block expression was associated with shorter OS in endometriosis-associated carcinomas, clear cell [hazard ratio (HR): 2.02, 95% confidence (CI) 1.47-2.77, p < 0.001] and endometrioid (HR: 1.88, 95% CI 1.30-2.75, p = 0.004), while absence was associated with shorter OS in low-grade serous carcinomas (HR: 2.95, 95% CI 1.61-5.38, p = 0.001). Absence was most frequent in mucinous carcinoma (50%), and was not associated with OS in this histotype. The prognostic value of p16 expression is histotype-specific and pattern dependent. We provide definitive evidence against an association of p16 expression with survival in ovarian HGSC as previously suggested. Block expression of p16 in clear cell and endometrioid carcinoma should be further validated as a prognostic marker, and absence in low-grade serous carcinoma justifies CDK4 inhibition.
  • Item
    Thumbnail Image
    Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary
    Ahmed, AA ; Etemadmoghadam, D ; Temple, J ; Lynch, AG ; Riad, M ; Sharma, R ; Stewart, C ; Fereday, S ; Caldas, C ; DeFazio, A ; Bowtell, D ; Brenton, JD (WILEY, 2010-05)
    Numerous studies have tested the association between TP53 mutations in ovarian cancer and prognosis but these have been consistently confounded by limitations in study design, methodology, and/or heterogeneity in the sample cohort. High-grade serous (HGS) carcinoma is the most clinically important histological subtype of ovarian cancer. As these tumours may arise from the ovary, Fallopian tube or peritoneum, they are collectively referred to as high-grade pelvic serous carcinoma (HGPSC). To identify the true prevalence of TP53 mutations in HGPSC, we sequenced exons 2-11 and intron-exon boundaries in tumour DNA from 145 patients. HGPSC cases were defined as having histological grade 2 or 3 and FIGO stage III or IV. Surprisingly, pathogenic TP53 mutations were identified in 96.7% (n = 119/123) of HGPSC cases. Molecular and pathological review of mutation-negative cases showed evidence of p53 dysfunction associated with copy number gain of MDM2 or MDM4, or indicated the exclusion of samples as being low-grade serous tumours or carcinoma of uncertain primary site. Overall, p53 dysfunction rate approached 100% of confirmed HGPSCs. No association between TP53 mutation and progression-free or overall survival was found. From this first comprehensive mapping of TP53 mutation rate in a homogeneous group of HGPSC patients, we conclude that mutant TP53 is a driver mutation in the pathogenesis of HGPSC cancers. Because TP53 mutation is almost invariably present in HGPSC, it is not of substantial prognostic or predictive significance.
  • Item
    Thumbnail Image
    Evidence for a time-dependent association between FOLR1 expression and survival from ovarian carcinoma: implications for clinical testing. An Ovarian Tumour Tissue Analysis consortium study
    Koebel, M ; Madore, J ; Ramus, SJ ; Clarke, BA ; Pharoah, PDP ; Deen, S ; Bowtell, DD ; Odunsi, K ; Menon, U ; Morrison, C ; Lele, S ; Bshara, W ; Sucheston, L ; Beckmann, MW ; Hein, A ; Thiel, FC ; Hartmann, A ; Wachter, DL ; Anglesio, MS ; Hogdall, E ; Jensen, A ; Hogdall, C ; Kalli, KR ; Fridley, BL ; Keeney, GL ; Fogarty, ZC ; Vierkant, RA ; Liu, S ; Cho, S ; Nelson, G ; Ghatage, P ; Gentry-Maharaj, A ; Gayther, SA ; Benjamin, E ; Widschwendter, M ; Intermaggio, MP ; Rosen, B ; Bernardini, MQ ; Mackay, H ; Oza, A ; Shaw, P ; Jimenez-Linan, M ; Driver, KE ; Alsop, J ; Mack, M ; Koziak, JM ; Steed, H ; Ewanowich, C ; DeFazio, A ; Chenevix-Trench, G ; Fereday, S ; Gao, B ; Johnatty, SE ; George, J ; Galletta, L ; Goode, EL ; Kjaer, SK ; Huntsman, DG ; Fasching, PA ; Moysich, KB ; Brenton, JD ; Kelemen, LE (SPRINGERNATURE, 2014-12-09)
    BACKGROUND: Folate receptor 1 (FOLR1) is expressed in the majority of ovarian carcinomas (OvCa), making it an attractive target for therapy. However, clinical trials testing anti-FOLR1 therapies in OvCa show mixed results and require better understanding of the prognostic relevance of FOLR1 expression. We conducted a large study evaluating FOLR1 expression with survival in different histological types of OvCa. METHODS: Tissue microarrays composed of tumour samples from 2801 patients in the Ovarian Tumour Tissue Analysis (OTTA) consortium were assessed for FOLR1 expression by centralised immunohistochemistry. We estimated associations for overall (OS) and progression-free (PFS) survival using adjusted Cox regression models. High-grade serous ovarian carcinomas (HGSC) from The Cancer Genome Atlas (TCGA) were evaluated independently for association between FOLR1 mRNA upregulation and survival. RESULTS: FOLR1 expression ranged from 76% in HGSC to 11% in mucinous carcinomas in OTTA. For HGSC, the association between FOLR1 expression and OS changed significantly during the years following diagnosis in OTTA (Pinteraction=0.01, N=1422) and TCGA (Pinteraction=0.01, N=485). In OTTA, particularly for FIGO stage I/II tumours, patients with FOLR1-positive HGSC showed increased OS during the first 2 years only (hazard ratio=0.44, 95% confidence interval=0.20-0.96) and patients with FOLR1-positive clear cell carcinomas (CCC) showed decreased PFS independent of follow-up time (HR=1.89, 95% CI=1.10-3.25, N=259). In TCGA, FOLR1 mRNA upregulation in HGSC was also associated with increased OS during the first 2 years following diagnosis irrespective of tumour stage (HR: 0.48, 95% CI: 0.25-0.94). CONCLUSIONS: FOLR1-positive HGSC tumours were associated with an increased OS in the first 2 years following diagnosis. Patients with FOLR1-negative, poor prognosis HGSC would be unlikely to benefit from anti-FOLR1 therapies. In contrast, a decreased PFS interval was observed for FOLR1-positive CCC. The clinical efficacy of FOLR1-targeted interventions should therefore be evaluated according to histology, stage and time following diagnosis.
  • Item
    Thumbnail Image
    MyD88 and TLR4 Expression in Epithelial Ovarian Cancer
    Block, MS ; Vierkant, RA ; Rambau, PF ; Winham, SJ ; Wagner, P ; Traficante, N ; Toloczko, A ; Tiezzi, DG ; Taran, FA ; Sinn, P ; Sieh, W ; Sharma, R ; Rothstein, JH ; Ramon y Cajal, T ; Paz-Ares, L ; Oszurek, O ; Orsulic, S ; Ness, RB ; Nelson, G ; Modugno, F ; Menkiszak, J ; McGuire, V ; McCauley, BM ; Mack, M ; Lubinski, J ; Longacre, TA ; Li, Z ; Lester, J ; Kennedy, CJ ; Kalli, KR ; Jung, AY ; Johnatty, SE ; Jimenez-Linan, M ; Jensen, A ; Intermaggio, MP ; Hung, J ; Herpel, E ; Hernandez, BY ; Hartkopf, AD ; Harnett, PR ; Ghatage, P ; Garcia-Bueno, JM ; Gao, B ; Fereday, S ; Eilber, U ; Edwards, RP ; de Sousa, CB ; de Andrade, JM ; Chudecka-Glaz, A ; Chenevix-Trench, G ; Cazorla, A ; Brucker, SY ; Alsop, J ; Whittemore, AS ; Steed, H ; Staebler, A ; Moysich, KB ; Menon, U ; Koziak, JM ; Kommoss, S ; Kjaer, SK ; Kelemen, LE ; Karlan, BY ; Huntsman, DG ; Hogdall, E ; Gronwald, J ; Goodman, MT ; Gilks, B ; Jose Garcia, M ; Fasching, PA ; de Fazio, A ; Deen, S ; Chang-Claude, J ; dos Reis, FJC ; Campbell, IG ; Brenton, JD ; Bowtell, DD ; Benitez, J ; Pharoah, PDP ; Kobel, M ; Ramus, SJ ; Goode, EL (ELSEVIER SCIENCE INC, 2018-03)
    OBJECTIVE: To evaluate myeloid differentiation primary response gene 88 (MyD88) and Toll-like receptor 4 (TLR4) expression in relation to clinical features of epithelial ovarian cancer, histologic subtypes, and overall survival. PATIENTS AND METHODS: We conducted centralized immunohistochemical staining, semi-quantitative scoring, and survival analysis in 5263 patients participating in the Ovarian Tumor Tissue Analysis consortium. Patients were diagnosed between January 1, 1978, and December 31, 2014, including 2865 high-grade serous ovarian carcinomas (HGSOCs), with more than 12,000 person-years of follow-up time. Tissue microarrays were stained for MyD88 and TLR4, and staining intensity was classified using a 2-tiered system for each marker (weak vs strong). RESULTS: Expression of MyD88 and TLR4 was similar in all histotypes except clear cell ovarian cancer, which showed reduced expression compared with other histotypes (P<.001 for both). In HGSOC, strong MyD88 expression was modestly associated with shortened overall survival (hazard ratio [HR], 1.13; 95% CI, 1.01-1.26; P=.04) but was also associated with advanced stage (P<.001). The expression of TLR4 was not associated with survival. In low-grade serous ovarian cancer (LGSOC), strong expression of both MyD88 and TLR4 was associated with favorable survival (HR [95% CI], 0.49 [0.29-0.84] and 0.44 [0.21-0.89], respectively; P=.009 and P=.02, respectively). CONCLUSION: Results are consistent with an association between strong MyD88 staining and advanced stage and poorer survival in HGSOC and demonstrate correlation between strong MyD88 and TLR4 staining and improved survival in LGSOC, highlighting the biological differences between the 2 serous histotypes.
  • Item
    Thumbnail Image
    Multiple ABCB1 transcriptional fusions in drug resistant high-grade serous ovarian and breast cancer
    Christie, EL ; Pattnaik, S ; Beach, J ; Copeland, A ; Rashoo, N ; Fereday, S ; Hendley, J ; Alsop, K ; Brady, SL ; Lamb, G ; Pandey, A ; deFazio, A ; Thorne, H ; Bild, A ; Bowtell, DDL (NATURE PUBLISHING GROUP, 2019-03-20)
    ABCB1 encodes Multidrug Resistance protein (MDR1), an ATP-binding cassette member involved in the cellular efflux of chemotherapeutic drugs. Here we report that ovarian and breast samples from chemotherapy treated patients are positive for multiple transcriptional fusions involving ABCB1, placing it under the control of a strong promoter while leaving its open reading frame intact. We identified 15 different transcriptional fusion partners involving ABCB1, as well as patients with multiple distinct fusion events. The partner gene selected depended on its structure, promoter strength, and chromosomal proximity to ABCB1. Fusion positivity was strongly associated with the number of lines of MDR1-substrate chemotherapy given. MDR1 inhibition in a fusion positive ovarian cancer cell line increased sensitivity to paclitaxel more than 50-fold. Convergent evolution of ABCB1 fusion is therefore frequent in chemotherapy resistant recurrent ovarian cancer. As most currently approved PARP inhibitors (PARPi) are MDR1 substrates, prior chemotherapy may precondition resistance to PARPi.
  • Item
    Thumbnail Image
    Prognostic gene expression signature for high-grade serous ovarian cancer
    Millstein, J ; Budden, T ; Goode, EL ; Anglesio, MS ; Talhouk, A ; Intermaggio, MP ; Leong, HS ; Chen, S ; Elatre, W ; Gilks, B ; Nazeran, T ; Volchek, M ; Bentley, RC ; Wang, C ; Chiu, DS ; Kommoss, S ; Leung, SCY ; Senz, J ; Lum, A ; Chow, V ; Sudderuddin, H ; Mackenzie, R ; George, J ; Fereday, S ; Hendley, J ; Traficante, N ; Steed, H ; Koziak, JM ; Kobel, M ; McNeish, IA ; Goranova, T ; Ennis, D ; Macintyre, G ; De Silva, DS ; Ramon y Cajal, T ; Garcia-Donas, J ; Hernando Polo, S ; Rodriguez, GC ; Cushing-Haugen, KL ; Harris, HR ; Greene, CS ; Zelaya, RA ; Behrens, S ; Fortner, RT ; Sinn, P ; Herpel, E ; Lester, J ; Lubinski, J ; Oszurek, O ; Toloczko, A ; Cybulski, C ; Menkiszak, J ; Pearce, CL ; Pike, MC ; Tseng, C ; Alsop, J ; Rhenius, V ; Song, H ; Jimenez-Linan, M ; Piskorz, AM ; Gentry-Maharaj, A ; Karpinskyj, C ; Widschwendter, M ; Singh, N ; Kennedy, CJ ; Sharma, R ; Harnett, PR ; Gao, B ; Johnatty, SE ; Sayer, R ; Boros, J ; Winham, SJ ; Keeney, GL ; Kaufmann, SH ; Larson, MC ; Luk, H ; Hernandez, BY ; Thompson, PJ ; Wilkens, LR ; Carney, ME ; Trabert, B ; Lissowska, J ; Brinton, L ; Sherman, ME ; Bodelon, C ; Hinsley, S ; Lewsley, LA ; Glasspool, R ; Banerjee, SN ; Stronach, EA ; Haluska, P ; Ray-Coquard, I ; Mahner, S ; Winterhoff, B ; Slamon, D ; Levine, DA ; Kelemen, LE ; Benitez, J ; Chang-Claude, J ; Gronwald, J ; Wu, AH ; Menon, U ; Goodman, MT ; Schildkraut, JM ; Wentzensen, N ; Brown, R ; Berchuck, A ; Chenevix-Trench, G ; DeFazio, A ; Gayther, SA ; Garcia, MJ ; Henderson, MJ ; Rossing, MA ; Beeghly-Fadiel, A ; Fasching, PA ; Orsulic, S ; Karlan, BY ; Konecny, GE ; Huntsman, DG ; Bowtell, DD ; Brenton, JD ; Doherty, JA ; Pharoah, PDP ; Ramus, SJ (ELSEVIER, 2020-09)
    BACKGROUND: Median overall survival (OS) for women with high-grade serous ovarian cancer (HGSOC) is ∼4 years, yet survival varies widely between patients. There are no well-established, gene expression signatures associated with prognosis. The aim of this study was to develop a robust prognostic signature for OS in patients with HGSOC. PATIENTS AND METHODS: Expression of 513 genes, selected from a meta-analysis of 1455 tumours and other candidates, was measured using NanoString technology from formalin-fixed paraffin-embedded tumour tissue collected from 3769 women with HGSOC from multiple studies. Elastic net regularization for survival analysis was applied to develop a prognostic model for 5-year OS, trained on 2702 tumours from 15 studies and evaluated on an independent set of 1067 tumours from six studies. RESULTS: Expression levels of 276 genes were associated with OS (false discovery rate < 0.05) in covariate-adjusted single-gene analyses. The top five genes were TAP1, ZFHX4, CXCL9, FBN1 and PTGER3 (P < 0.001). The best performing prognostic signature included 101 genes enriched in pathways with treatment implications. Each gain of one standard deviation in the gene expression score conferred a greater than twofold increase in risk of death [hazard ratio (HR) 2.35, 95% confidence interval (CI) 2.02-2.71; P < 0.001]. Median survival [HR (95% CI)] by gene expression score quintile was 9.5 (8.3 to -), 5.4 (4.6-7.0), 3.8 (3.3-4.6), 3.2 (2.9-3.7) and 2.3 (2.1-2.6) years. CONCLUSION: The OTTA-SPOT (Ovarian Tumor Tissue Analysis consortium - Stratified Prognosis of Ovarian Tumours) gene expression signature may improve risk stratification in clinical trials by identifying patients who are least likely to achieve 5-year survival. The identified novel genes associated with the outcome may also yield opportunities for the development of targeted therapeutic approaches.