Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    The genomic and immune landscape of long-term survivors of high-grade serous ovarian cancer
    Garsed, DW ; Pandey, A ; Fereday, S ; Kennedy, CJ ; Takahashi, K ; Alsop, K ; Hamilton, PT ; Hendley, J ; Chiew, Y-E ; Traficante, N ; Provan, P ; Ariyaratne, D ; Au-Yeung, G ; Bateman, NW ; Bowes, L ; Brand, A ; Christie, EL ; Cunningham, JM ; Friedlander, M ; Grout, B ; Harnett, P ; Hung, J ; McCauley, B ; McNally, O ; Piskorz, AM ; Saner, FAM ; Vierkant, RA ; Wang, C ; Winham, SJ ; Pharoah, PDP ; Brenton, JD ; Conrads, TP ; Maxwell, GL ; Ramus, SJ ; Pearce, CL ; Pike, MC ; Nelson, BH ; Goode, EL ; DeFazio, A ; Bowtell, DDL (NATURE PORTFOLIO, 2022-12)
    Fewer than half of all patients with advanced-stage high-grade serous ovarian cancers (HGSCs) survive more than five years after diagnosis, but those who have an exceptionally long survival could provide insights into tumor biology and therapeutic approaches. We analyzed 60 patients with advanced-stage HGSC who survived more than 10 years after diagnosis using whole-genome sequencing, transcriptome and methylome profiling of their primary tumor samples, comparing this data to 66 short- or moderate-term survivors. Tumors of long-term survivors were more likely to have multiple alterations in genes associated with DNA repair and more frequent somatic variants resulting in an increased predicted neoantigen load. Patients clustered into survival groups based on genomic and immune cell signatures, including three subsets of patients with BRCA1 alterations with distinctly different outcomes. Specific combinations of germline and somatic gene alterations, tumor cell phenotypes and differential immune responses appear to contribute to long-term survival in HGSC.
  • Item
    Thumbnail Image
    Epithelial-to-Mesenchymal Transition Supports Ovarian Carcinosarcoma Tumorigenesis and Confers Sensitivity to Microtubule Targeting with Eribulin
    Ho, GY ; Kyran, EL ; Bedo, J ; Wakefield, MJ ; Ennis, DP ; Mirza, HB ; Vandenberg, CJ ; Lieschke, E ; Farrell, A ; Hadla, A ; Lim, R ; Dall, G ; Vince, JE ; Chua, NK ; Kondrashova, O ; Upstill-Goddard, R ; Bailey, U-M ; Dowson, S ; Roxburgh, P ; Glasspool, RM ; Bryson, G ; Biankin, AV ; Cooke, SL ; Ratnayake, G ; McNally, O ; Traficante, N ; DeFazio, A ; Weroha, SJ ; Bowtell, DD ; McNeish, IA ; Papenfuss, AT ; Scott, CL ; Barker, HE (AMER ASSOC CANCER RESEARCH, 2022-12-01)
    UNLABELLED: Ovarian carcinosarcoma (OCS) is an aggressive and rare tumor type with limited treatment options. OCS is hypothesized to develop via the combination theory, with a single progenitor resulting in carcinomatous and sarcomatous components, or alternatively via the conversion theory, with the sarcomatous component developing from the carcinomatous component through epithelial-to-mesenchymal transition (EMT). In this study, we analyzed DNA variants from isolated carcinoma and sarcoma components to show that OCS from 18 women is monoclonal. RNA sequencing indicated that the carcinoma components were more mesenchymal when compared with pure epithelial ovarian carcinomas, supporting the conversion theory and suggesting that EMT is important in the formation of these tumors. Preclinical OCS models were used to test the efficacy of microtubule-targeting drugs, including eribulin, which has previously been shown to reverse EMT characteristics in breast cancers and induce differentiation in sarcomas. Vinorelbine and eribulin more effectively inhibited OCS growth than standard-of-care platinum-based chemotherapy, and treatment with eribulin reduced mesenchymal characteristics and N-MYC expression in OCS patient-derived xenografts. Eribulin treatment resulted in an accumulation of intracellular cholesterol in OCS cells, which triggered a downregulation of the mevalonate pathway and prevented further cholesterol biosynthesis. Finally, eribulin increased expression of genes related to immune activation and increased the intratumoral accumulation of CD8+ T cells, supporting exploration of immunotherapy combinations in the clinic. Together, these data indicate that EMT plays a key role in OCS tumorigenesis and support the conversion theory for OCS histogenesis. Targeting EMT using eribulin could help improve OCS patient outcomes. SIGNIFICANCE: Genomic analyses and preclinical models of ovarian carcinosarcoma support the conversion theory for disease development and indicate that microtubule inhibitors could be used to suppress EMT and stimulate antitumor immunity.
  • Item
    Thumbnail Image
    Therapeutic options for mucinous ovarian carcinoma
    Gorringe, KL ; Cheasley, D ; Wakefield, MJ ; Ryland, GL ; Allan, PE ; Alsop, K ; Amarasinghe, KC ; Ananda, S ; Bowtell, DDL ; Christie, M ; Chiew, Y-E ; Churchman, M ; DeFazio, A ; Fereday, S ; Gilks, CB ; Gourley, C ; Hadley, AM ; Hendley, J ; Hunter, SM ; Kaufmann, SH ; Kennedy, CJ ; Kobel, M ; Le Page, C ; Li, J ; Lupat, R ; McNally, OM ; McAlpine, JN ; Pyman, J ; Rowley, SM ; Salazar, C ; Saunders, H ; Semple, T ; Stephens, AN ; Thio, N ; Torres, MC ; Traficante, N ; Zethoven, M ; Antill, YC ; Campbell, IG ; Scott, CL (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2020-03)
    OBJECTIVE: Mucinous ovarian carcinoma (MOC) is an uncommon ovarian cancer histotype that responds poorly to conventional chemotherapy regimens. Although long overall survival outcomes can occur with early detection and optimal surgical resection, recurrent and advanced disease are associated with extremely poor survival. There are no current guidelines specifically for the systemic management of recurrent MOC. We analyzed data from a large cohort of women with MOC to evaluate the potential for clinical utility from a range of systemic agents. METHODS: We analyzed gene copy number (n = 191) and DNA sequencing data (n = 184) from primary MOC to evaluate signatures of mismatch repair deficiency and homologous recombination deficiency, and other genetic events. Immunohistochemistry data were collated for ER, CK7, CK20, CDX2, HER2, PAX8 and p16 (n = 117-166). RESULTS: Molecular aberrations noted in MOC that suggest a match with current targeted therapies include amplification of ERBB2 (26.7%) and BRAF mutation (9%). Observed genetic events that suggest potential efficacy for agents currently in clinical trials include: KRAS/NRAS mutations (66%), TP53 missense mutation (49%), RNF43 mutation (11%), ARID1A mutation (10%), and PIK3CA/PTEN mutation (9%). Therapies exploiting homologous recombination deficiency (HRD) may not be effective in MOC, as only 1/191 had a high HRD score. Mismatch repair deficiency was similarly rare (1/184). CONCLUSIONS: Although genetically diverse, MOC has several potential therapeutic targets. Importantly, the lack of response to platinum-based therapy observed clinically corresponds to the lack of a genomic signature associated with HRD, and MOC are thus also unlikely to respond to PARP inhibition.