Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    The genomic and immune landscape of long-term survivors of high-grade serous ovarian cancer
    Garsed, DW ; Pandey, A ; Fereday, S ; Kennedy, CJ ; Takahashi, K ; Alsop, K ; Hamilton, PT ; Hendley, J ; Chiew, Y-E ; Traficante, N ; Provan, P ; Ariyaratne, D ; Au-Yeung, G ; Bateman, NW ; Bowes, L ; Brand, A ; Christie, EL ; Cunningham, JM ; Friedlander, M ; Grout, B ; Harnett, P ; Hung, J ; McCauley, B ; McNally, O ; Piskorz, AM ; Saner, FAM ; Vierkant, RA ; Wang, C ; Winham, SJ ; Pharoah, PDP ; Brenton, JD ; Conrads, TP ; Maxwell, GL ; Ramus, SJ ; Pearce, CL ; Pike, MC ; Nelson, BH ; Goode, EL ; DeFazio, A ; Bowtell, DDL (NATURE PORTFOLIO, 2022-12)
    Fewer than half of all patients with advanced-stage high-grade serous ovarian cancers (HGSCs) survive more than five years after diagnosis, but those who have an exceptionally long survival could provide insights into tumor biology and therapeutic approaches. We analyzed 60 patients with advanced-stage HGSC who survived more than 10 years after diagnosis using whole-genome sequencing, transcriptome and methylome profiling of their primary tumor samples, comparing this data to 66 short- or moderate-term survivors. Tumors of long-term survivors were more likely to have multiple alterations in genes associated with DNA repair and more frequent somatic variants resulting in an increased predicted neoantigen load. Patients clustered into survival groups based on genomic and immune cell signatures, including three subsets of patients with BRCA1 alterations with distinctly different outcomes. Specific combinations of germline and somatic gene alterations, tumor cell phenotypes and differential immune responses appear to contribute to long-term survival in HGSC.
  • Item
    No Preview Available
    CCNE1 and survival of patients with tubo-ovarian high-grade serous carcinoma: An Ovarian Tumor Tissue Analysis consortium study
    Kang, E-Y ; Weir, A ; Meagher, NS ; Farrington, K ; Nelson, GS ; Ghatage, P ; Lee, C-H ; Riggan, MJ ; Bolithon, A ; Popovic, G ; Leung, B ; Tang, K ; Lambie, N ; Millstein, J ; Alsop, J ; Anglesio, MS ; Ataseven, B ; Barlow, E ; Beckmann, MW ; Berger, J ; Bisinotto, C ; Boesmueller, H ; Boros, J ; Brand, AH ; Brooks-Wilson, A ; Brucker, SY ; Carney, ME ; Casablanca, Y ; Cazorla-Jimenez, A ; Cohen, PA ; Conrads, TP ; Cook, LS ; Coulson, P ; Courtney-Brooks, M ; Cramer, DW ; Crowe, P ; Cunningham, JM ; Cybulski, C ; Darcy, KM ; El-Bahrawy, MA ; Elishaev, E ; Erber, R ; Farrell, R ; Fereday, S ; Fischer, A ; Garcia, MJ ; Gayther, SA ; Gentry-Maharaj, A ; Gilks, CB ; Grube, M ; Harnett, PR ; Harrington, SP ; Harter, P ; Hartmann, A ; Hecht, JL ; Heikaus, S ; Hein, A ; Heitz, F ; Hendley, J ; Hernandez, BY ; Hernando Polo, S ; Heublein, S ; Hirasawa, A ; Hogdall, E ; Hogdall, CK ; Horlings, HM ; Huntsman, DG ; Huzarski, T ; Jewell, A ; Jimenez-Linan, M ; Jones, ME ; Kaufmann, SH ; Kennedy, CJ ; Khabele, D ; Kommoss, FKF ; Kruitwagen, RFPM ; Lambrechts, D ; Le, ND ; Lener, M ; Lester, J ; Leung, Y ; Linder, A ; Loverix, L ; Lubinski, J ; Madan, R ; Maxwell, GL ; Modugno, F ; Neuhausen, SL ; Olawaiye, A ; Olbrecht, S ; Orsulic, S ; Palacios, J ; Pearce, CL ; Pike, MC ; Quinn, CM ; Mohan, GR ; Rodriguez-Antona, C ; Ruebner, M ; Ryan, A ; Salfinger, SG ; Sasamoto, N ; Schildkraut, JM ; Schoemaker, MJ ; Shah, M ; Sharma, R ; Shvetsov, YB ; Singh, N ; Sonke, GS ; Steele, L ; Stewart, CJR ; Sundfeldt, K ; Swerdlow, AJ ; Talhouk, A ; Tan, A ; Taylor, SE ; Terry, KL ; Toloczko, A ; Traficante, N ; Van de Vijver, KK ; van der Aa, MA ; Van Gorp, T ; Van Nieuwenhuysen, E ; Van-Wagensveld, L ; Vergote, I ; Vierkant, RA ; Wang, C ; Wilkens, LR ; Winham, SJ ; Wu, AH ; Benitez, J ; Berchuck, A ; Candido Dos Reis, FJ ; DeFazio, A ; Fasching, PA ; Goode, EL ; Goodman, MT ; Gronwald, J ; Karlan, BY ; Kommoss, S ; Menon, U ; Sinn, H-P ; Staebler, A ; Brenton, JD ; Bowtell, DD ; Pharoah, PDP ; Ramus, SJ ; Kobel, M (WILEY, 2023-03-01)
    BACKGROUND: Cyclin E1 (CCNE1) is a potential predictive marker and therapeutic target in tubo-ovarian high-grade serous carcinoma (HGSC). Smaller studies have revealed unfavorable associations for CCNE1 amplification and CCNE1 overexpression with survival, but to date no large-scale, histotype-specific validation has been performed. The hypothesis was that high-level amplification of CCNE1 and CCNE1 overexpression, as well as a combination of the two, are linked to shorter overall survival in HGSC. METHODS: Within the Ovarian Tumor Tissue Analysis consortium, amplification status and protein level in 3029 HGSC cases and mRNA expression in 2419 samples were investigated. RESULTS: High-level amplification (>8 copies by chromogenic in situ hybridization) was found in 8.6% of HGSC and overexpression (>60% with at least 5% demonstrating strong intensity by immunohistochemistry) was found in 22.4%. CCNE1 high-level amplification and overexpression both were linked to shorter overall survival in multivariate survival analysis adjusted for age and stage, with hazard stratification by study (hazard ratio [HR], 1.26; 95% CI, 1.08-1.47, p = .034, and HR, 1.18; 95% CI, 1.05-1.32, p = .015, respectively). This was also true for cases with combined high-level amplification/overexpression (HR, 1.26; 95% CI, 1.09-1.47, p = .033). CCNE1 mRNA expression was not associated with overall survival (HR, 1.00 per 1-SD increase; 95% CI, 0.94-1.06; p = .58). CCNE1 high-level amplification is mutually exclusive with the presence of germline BRCA1/2 pathogenic variants and shows an inverse association to RB1 loss. CONCLUSION: This study provides large-scale validation that CCNE1 high-level amplification is associated with shorter survival, supporting its utility as a prognostic biomarker in HGSC.
  • Item
    No Preview Available
    p53 and ovarian carcinoma survival: an Ovarian Tumor Tissue Analysis consortium study
    Kobel, M ; Kang, E-Y ; Weir, A ; Rambau, PF ; Lee, C-H ; Nelson, GS ; Ghatage, P ; Meagher, NS ; Riggan, MJ ; Alsop, J ; Anglesio, MS ; Beckmann, MW ; Bisinotto, C ; Boisen, M ; Boros, J ; Brand, AH ; Brooks-Wilson, A ; Carney, ME ; Coulson, P ; Courtney-Brooks, M ; Cushing-Haugen, KL ; Cybulski, C ; Deen, S ; El-Bahrawy, MA ; Elishaev, E ; Erber, R ; Fereday, S ; Fischer, A ; Gayther, SA ; Barquin-Garcia, A ; Gentry-Maharaj, A ; Gilks, CB ; Gronwald, H ; Grube, M ; Harnett, PR ; Harris, HR ; Hartkopf, AD ; Hartmann, A ; Hein, A ; Hendley, J ; Hernandez, BY ; Huang, Y ; Jakubowska, A ; Jimenez-Linan, M ; Jones, ME ; Kennedy, CJ ; Kluz, T ; Koziak, JM ; Lesnock, J ; Lester, J ; Lubinski, J ; Longacre, TA ; Lycke, M ; Mateoiu, C ; McCauley, BM ; McGuire, V ; Ney, B ; Olawaiye, A ; Orsulic, S ; Osorio, A ; Paz-Ares, L ; Ramon Y Cajal, T ; Rothstein, JH ; Ruebner, M ; Schoemaker, MJ ; Shah, M ; Sharma, R ; Sherman, ME ; Shvetsov, YB ; Singh, N ; Steed, H ; Storr, SJ ; Talhouk, A ; Traficante, N ; Wang, C ; Whittemore, AS ; Widschwendter, M ; Wilkens, LR ; Winham, SJ ; Benitez, J ; Berchuck, A ; Bowtell, DD ; Candido dos Reis, FJ ; Campbell, I ; Cook, LS ; DeFazio, A ; Doherty, JA ; Fasching, PA ; Fortner, RT ; Garcia, MJ ; Goodman, MT ; Goode, EL ; Gronwald, J ; Huntsman, DG ; Karlan, BY ; Kelemen, LE ; Kommoss, S ; Le, ND ; Martin, SG ; Menon, U ; Modugno, F ; Pharoah, PDP ; Schildkraut, JM ; Sieh, W ; Staebler, A ; Sundfeldt, K ; Swerdlow, AJ ; Ramus, SJ ; Brenton, JD (WILEY, 2023-05)
    Our objective was to test whether p53 expression status is associated with survival for women diagnosed with the most common ovarian carcinoma histotypes (high-grade serous carcinoma [HGSC], endometrioid carcinoma [EC], and clear cell carcinoma [CCC]) using a large multi-institutional cohort from the Ovarian Tumor Tissue Analysis (OTTA) consortium. p53 expression was assessed on 6,678 cases represented on tissue microarrays from 25 participating OTTA study sites using a previously validated immunohistochemical (IHC) assay as a surrogate for the presence and functional effect of TP53 mutations. Three abnormal expression patterns (overexpression, complete absence, and cytoplasmic) and the normal (wild type) pattern were recorded. Survival analyses were performed by histotype. The frequency of abnormal p53 expression was 93.4% (4,630/4,957) in HGSC compared to 11.9% (116/973) in EC and 11.5% (86/748) in CCC. In HGSC, there were no differences in overall survival across the abnormal p53 expression patterns. However, in EC and CCC, abnormal p53 expression was associated with an increased risk of death for women diagnosed with EC in multivariate analysis compared to normal p53 as the reference (hazard ratio [HR] = 2.18, 95% confidence interval [CI] 1.36-3.47, p = 0.0011) and with CCC (HR = 1.57, 95% CI 1.11-2.22, p = 0.012). Abnormal p53 was also associated with shorter overall survival in The International Federation of Gynecology and Obstetrics stage I/II EC and CCC. Our study provides further evidence that functional groups of TP53 mutations assessed by abnormal surrogate p53 IHC patterns are not associated with survival in HGSC. In contrast, we validate that abnormal p53 IHC is a strong independent prognostic marker for EC and demonstrate for the first time an independent prognostic association of abnormal p53 IHC with overall survival in patients with CCC.
  • Item
    Thumbnail Image
    Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci
    DeVries, AA ; Dennis, J ; Tyrer, JP ; Peng, P-C ; Coetzee, SG ; Reyes, AL ; Plummer, JT ; Davis, BD ; Chen, SS ; Dezem, FS ; Aben, KKH ; Anton-Culver, H ; Antonenkova, NN ; Beckmann, MW ; Beeghly-Fadiel, A ; Berchuck, A ; Bogdanova, N ; Bogdanova-Markov, N ; Brenton, JD ; Butzow, R ; Campbell, I ; Chang-Claude, J ; Chenevix-Trench, G ; Cook, LS ; DeFazio, A ; Doherty, JA ; Dork, T ; Eccles, DM ; Eliassen, AH ; Fasching, PA ; Fortner, RT ; Giles, GG ; Goode, EL ; Goodman, MT ; Gronwald, J ; Hakansson, N ; Hildebrandt, MAT ; Huff, C ; Huntsman, DG ; Jensen, A ; Kar, S ; Karlan, BY ; Khusnutdinova, EK ; Kiemeney, LA ; Kjaer, SK ; Kupryjanczyk, J ; Labrie, M ; Lambrechts, D ; Le, ND ; Lubinski, J ; May, T ; Menon, U ; Milne, RL ; Modugno, F ; Monteiro, AN ; Moysich, KB ; Odunsi, K ; Olsson, H ; Pearce, CL ; Pejovic, T ; Ramus, SJ ; Riboli, E ; Riggan, MJ ; Romieu, I ; Sandler, DP ; Schildkraut, JM ; Setiawan, VW ; Sieh, W ; Song, H ; Sutphen, R ; Terry, KL ; Thompson, PJ ; Titus, L ; Tworoger, SS ; Van Nieuwenhuysen, E ; Edwards, DV ; Webb, PM ; Wentzensen, N ; Whittemore, AS ; Wolk, A ; Wu, AH ; Ziogas, A ; Freedman, ML ; Lawrenson, K ; Pharoah, PDP ; Easton, DF ; Gayther, SA ; Jones, MR (OXFORD UNIV PRESS INC, 2022-11)
    BACKGROUND: Known risk alleles for epithelial ovarian cancer (EOC) account for approximately 40% of the heritability for EOC. Copy number variants (CNVs) have not been investigated as EOC risk alleles in a large population cohort. METHODS: Single nucleotide polymorphism array data from 13 071 EOC cases and 17 306 controls of White European ancestry were used to identify CNVs associated with EOC risk using a rare admixture maximum likelihood test for gene burden and a by-probe ratio test. We performed enrichment analysis of CNVs at known EOC risk loci and functional biofeatures in ovarian cancer-related cell types. RESULTS: We identified statistically significant risk associations with CNVs at known EOC risk genes; BRCA1 (PEOC = 1.60E-21; OREOC = 8.24), RAD51C (Phigh-grade serous ovarian cancer [HGSOC] = 5.5E-4; odds ratio [OR]HGSOC = 5.74 del), and BRCA2 (PHGSOC = 7.0E-4; ORHGSOC = 3.31 deletion). Four suggestive associations (P < .001) were identified for rare CNVs. Risk-associated CNVs were enriched (P < .05) at known EOC risk loci identified by genome-wide association study. Noncoding CNVs were enriched in active promoters and insulators in EOC-related cell types. CONCLUSIONS: CNVs in BRCA1 have been previously reported in smaller studies, but their observed frequency in this large population-based cohort, along with the CNVs observed at BRCA2 and RAD51C gene loci in EOC cases, suggests that these CNVs are potentially pathogenic and may contribute to the spectrum of disease-causing mutations in these genes. CNVs are likely to occur in a wider set of susceptibility regions, with potential implications for clinical genetic testing and disease prevention.
  • Item
    Thumbnail Image
    Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in RAD51C and RAD51D
    Yang, X ; Song, H ; Leslie, G ; Engel, C ; Hahnen, E ; Auber, B ; Horvath, J ; Kast, K ; Niederacher, D ; Turnbull, C ; Houlston, R ; Hanson, H ; Loveday, C ; Dolinsky, JS ; LaDuca, H ; Ramus, SJ ; Menon, U ; Rosenthal, AN ; Jacobs, I ; Gayther, SA ; Dicks, E ; Nevanlinna, H ; Aittomaeki, K ; Pelttari, LM ; Ehrencrona, H ; Borg, A ; Kvist, A ; Rivera, B ; Hansen, TVO ; Djursby, M ; Lee, A ; Dennis, J ; Bowtell, DD ; Traficante, N ; Diez, O ; Balmana, J ; Gruber, SB ; Chenevix-Trench, G ; Jensen, A ; Kjaer, SK ; Hogdall, E ; Castera, L ; Garber, J ; Janavicius, R ; Osorio, A ; Golmard, L ; Vega, A ; Couch, FJ ; Robson, M ; Gronwald, J ; Domchek, SM ; Culver, JO ; de la Hoya, M ; Easton, DF ; Foulkes, WD ; Tischkowitz, M ; Meindl, A ; Schmutzler, RK ; Pharoah, PDP ; Antoniou, AC (OXFORD UNIV PRESS INC, 2020-12)
    BACKGROUND: The purpose of this study was to estimate precise age-specific tubo-ovarian carcinoma (TOC) and breast cancer (BC) risks for carriers of pathogenic variants in RAD51C and RAD51D. METHODS: We analyzed data from 6178 families, 125 with pathogenic variants in RAD51C, and 6690 families, 60 with pathogenic variants in RAD51D. TOC and BC relative and cumulative risks were estimated using complex segregation analysis to model the cancer inheritance patterns in families while adjusting for the mode of ascertainment of each family. All statistical tests were two-sided. RESULTS: Pathogenic variants in both RAD51C and RAD51D were associated with TOC (RAD51C: relative risk [RR] = 7.55, 95% confidence interval [CI] = 5.60 to 10.19; P = 5 × 10-40; RAD51D: RR = 7.60, 95% CI = 5.61 to 10.30; P = 5 × 10-39) and BC (RAD51C: RR = 1.99, 95% CI = 1.39 to 2.85; P = 1.55 × 10-4; RAD51D: RR = 1.83, 95% CI = 1.24 to 2.72; P = .002). For both RAD51C and RAD51D, there was a suggestion that the TOC relative risks increased with age until around age 60 years and decreased thereafter. The estimated cumulative risks of developing TOC to age 80 years were 11% (95% CI = 6% to 21%) for RAD51C and 13% (95% CI = 7% to 23%) for RAD51D pathogenic variant carriers. The estimated cumulative risks of developing BC to 80 years were 21% (95% CI = 15% to 29%) for RAD51C and 20% (95% CI = 14% to 28%) for RAD51D pathogenic variant carriers. Both TOC and BC risks for RAD51C and RAD51D pathogenic variant carriers varied by cancer family history and could be as high as 32-36% for TOC, for carriers with two first-degree relatives diagnosed with TOC, or 44-46% for BC, for carriers with two first-degree relatives diagnosed with BC. CONCLUSIONS: These estimates will facilitate the genetic counseling of RAD51C and RAD51D pathogenic variant carriers and justify the incorporation of RAD51C and RAD51D into cancer risk prediction models.
  • Item
    Thumbnail Image
    Population-based targeted sequencing of 54 candidate genes identifies PALB2 as a susceptibility gene for high-grade serous ovarian cancer
    Song, H ; Dicks, EM ; Tyrer, J ; Intermaggio, M ; Chenevix-Trench, G ; Bowtell, DD ; Traficante, N ; Brenton, J ; Goranova, T ; Hosking, K ; Piskorz, A ; van Oudenhove, E ; Doherty, J ; Harris, HR ; Rossing, MA ; Duerst, M ; Dork, T ; Bogdanova, N ; Modugno, F ; Moysich, K ; Odunsi, K ; Ness, R ; Karlan, BY ; Lester, J ; Jensen, A ; Kruger Kjaer, S ; Hogdall, E ; Campbell, IG ; Lazaro, C ; Pujara, MA ; Cunningham, J ; Vierkant, R ; Winham, SJ ; Hildebrandt, M ; Huff, C ; Li, D ; Wu, X ; Yu, Y ; Permuth, JB ; Levine, DA ; Schildkraut, JM ; Riggan, MJ ; Berchuck, A ; Webb, PM ; Cybulski, C ; Gronwald, J ; Jakubowska, A ; Lubinski, J ; Alsop, J ; Harrington, P ; Chan, I ; Menon, U ; Pearce, CL ; Wu, AH ; de Fazio, A ; Kennedy, CJ ; Goode, E ; Ramus, S ; Gayther, S ; Pharoah, P (BMJ PUBLISHING GROUP, 2021-05)
    PURPOSE: The known epithelial ovarian cancer (EOC) susceptibility genes account for less than 50% of the heritable risk of ovarian cancer suggesting that other susceptibility genes exist. The aim of this study was to evaluate the contribution to ovarian cancer susceptibility of rare deleterious germline variants in a set of candidate genes. METHODS: We sequenced the coding region of 54 candidate genes in 6385 invasive EOC cases and 6115 controls of broad European ancestry. Genes with an increased frequency of putative deleterious variants in cases versus controls were further examined in an independent set of 14 135 EOC cases and 28 655 controls from the Ovarian Cancer Association Consortium and the UK Biobank. For each gene, we estimated the EOC risks and evaluated associations between germline variant status and clinical characteristics. RESULTS: The ORs associated for high-grade serous ovarian cancer were 3.01 for PALB2 (95% CI 1.59 to 5.68; p=0.00068), 1.99 for POLK (95% CI 1.15 to 3.43; p=0.014) and 4.07 for SLX4 (95% CI 1.34 to 12.4; p=0.013). Deleterious mutations in FBXO10 were associated with a reduced risk of disease (OR 0.27, 95% CI 0.07 to 1.00, p=0.049). However, based on the Bayes false discovery probability, only the association for PALB2 in high-grade serous ovarian cancer is likely to represent a true positive. CONCLUSIONS: We have found strong evidence that carriers of PALB2 deleterious mutations are at increased risk of high-grade serous ovarian cancer. Whether the magnitude of risk is sufficiently high to warrant the inclusion of PALB2 in cancer gene panels for ovarian cancer risk testing is unclear; much larger sample sizes will be needed to provide sufficiently precise estimates for clinical counselling.
  • Item
    Thumbnail Image
    Prognostic gene expression signature for high-grade serous ovarian cancer
    Millstein, J ; Budden, T ; Goode, EL ; Anglesio, MS ; Talhouk, A ; Intermaggio, MP ; Leong, HS ; Chen, S ; Elatre, W ; Gilks, B ; Nazeran, T ; Volchek, M ; Bentley, RC ; Wang, C ; Chiu, DS ; Kommoss, S ; Leung, SCY ; Senz, J ; Lum, A ; Chow, V ; Sudderuddin, H ; Mackenzie, R ; George, J ; Fereday, S ; Hendley, J ; Traficante, N ; Steed, H ; Koziak, JM ; Kobel, M ; McNeish, IA ; Goranova, T ; Ennis, D ; Macintyre, G ; De Silva, DS ; Ramon y Cajal, T ; Garcia-Donas, J ; Hernando Polo, S ; Rodriguez, GC ; Cushing-Haugen, KL ; Harris, HR ; Greene, CS ; Zelaya, RA ; Behrens, S ; Fortner, RT ; Sinn, P ; Herpel, E ; Lester, J ; Lubinski, J ; Oszurek, O ; Toloczko, A ; Cybulski, C ; Menkiszak, J ; Pearce, CL ; Pike, MC ; Tseng, C ; Alsop, J ; Rhenius, V ; Song, H ; Jimenez-Linan, M ; Piskorz, AM ; Gentry-Maharaj, A ; Karpinskyj, C ; Widschwendter, M ; Singh, N ; Kennedy, CJ ; Sharma, R ; Harnett, PR ; Gao, B ; Johnatty, SE ; Sayer, R ; Boros, J ; Winham, SJ ; Keeney, GL ; Kaufmann, SH ; Larson, MC ; Luk, H ; Hernandez, BY ; Thompson, PJ ; Wilkens, LR ; Carney, ME ; Trabert, B ; Lissowska, J ; Brinton, L ; Sherman, ME ; Bodelon, C ; Hinsley, S ; Lewsley, LA ; Glasspool, R ; Banerjee, SN ; Stronach, EA ; Haluska, P ; Ray-Coquard, I ; Mahner, S ; Winterhoff, B ; Slamon, D ; Levine, DA ; Kelemen, LE ; Benitez, J ; Chang-Claude, J ; Gronwald, J ; Wu, AH ; Menon, U ; Goodman, MT ; Schildkraut, JM ; Wentzensen, N ; Brown, R ; Berchuck, A ; Chenevix-Trench, G ; DeFazio, A ; Gayther, SA ; Garcia, MJ ; Henderson, MJ ; Rossing, MA ; Beeghly-Fadiel, A ; Fasching, PA ; Orsulic, S ; Karlan, BY ; Konecny, GE ; Huntsman, DG ; Bowtell, DD ; Brenton, JD ; Doherty, JA ; Pharoah, PDP ; Ramus, SJ (ELSEVIER, 2020-09)
    BACKGROUND: Median overall survival (OS) for women with high-grade serous ovarian cancer (HGSOC) is ∼4 years, yet survival varies widely between patients. There are no well-established, gene expression signatures associated with prognosis. The aim of this study was to develop a robust prognostic signature for OS in patients with HGSOC. PATIENTS AND METHODS: Expression of 513 genes, selected from a meta-analysis of 1455 tumours and other candidates, was measured using NanoString technology from formalin-fixed paraffin-embedded tumour tissue collected from 3769 women with HGSOC from multiple studies. Elastic net regularization for survival analysis was applied to develop a prognostic model for 5-year OS, trained on 2702 tumours from 15 studies and evaluated on an independent set of 1067 tumours from six studies. RESULTS: Expression levels of 276 genes were associated with OS (false discovery rate < 0.05) in covariate-adjusted single-gene analyses. The top five genes were TAP1, ZFHX4, CXCL9, FBN1 and PTGER3 (P < 0.001). The best performing prognostic signature included 101 genes enriched in pathways with treatment implications. Each gain of one standard deviation in the gene expression score conferred a greater than twofold increase in risk of death [hazard ratio (HR) 2.35, 95% confidence interval (CI) 2.02-2.71; P < 0.001]. Median survival [HR (95% CI)] by gene expression score quintile was 9.5 (8.3 to -), 5.4 (4.6-7.0), 3.8 (3.3-4.6), 3.2 (2.9-3.7) and 2.3 (2.1-2.6) years. CONCLUSION: The OTTA-SPOT (Ovarian Tumor Tissue Analysis consortium - Stratified Prognosis of Ovarian Tumours) gene expression signature may improve risk stratification in clinical trials by identifying patients who are least likely to achieve 5-year survival. The identified novel genes associated with the outcome may also yield opportunities for the development of targeted therapeutic approaches.
  • Item
    Thumbnail Image
    Clinical and pathological associations of PTEN expression in ovarian cancer: a multicentre study from the Ovarian Tumour Tissue Analysis Consortium
    Martins, FC ; Couturier, D-L ; Paterson, A ; Karnezis, AN ; Christine, C ; Nazeran, TM ; Odunsi, A ; Gentry-Maharaj, A ; Vrvilo, A ; Hein, A ; Talhouk, A ; Osorio, A ; Hartkopf, AD ; Brooks-Wilson, A ; DeFazio, A ; Fischer, A ; Hartmann, A ; Hernandez, BY ; McCauley, BM ; Karpinskyj, C ; de Sousa, CB ; Hogdall, C ; Tiezzi, DG ; Herpel, E ; Taran, FA ; Modugno, F ; Keeney, G ; Nelson, G ; Steed, H ; Song, H ; Luk, H ; Benitez, J ; Alsop, J ; Koziak, JM ; Lester, J ; Rothstein, JH ; de Andrade, JM ; Lundvall, L ; Paz-Ares, L ; Robles-Diaz, L ; Wilkens, LR ; Garcia, MJ ; Intermaggio, MP ; Alcaraz, M-L ; Brett, MA ; Beckmann, MW ; Jimenez-Linan, M ; Anglesio, M ; Carney, ME ; Schneider, M ; Traficante, N ; Pejovic, N ; Singh, N ; Le, N ; Sinn, P ; Ghatage, P ; Erber, R ; Edwards, R ; Vierkant, R ; Ness, RB ; Leung, S ; Orsulic, S ; Brucker, SY ; Kaufmann, SH ; Fereday, S ; Gayther, S ; Winham, SJ ; Kommoss, S ; Pejovic, T ; Longacre, TA ; McGuire, V ; Rhenius, V ; Sieh, W ; Shvetsov, YB ; Whittemore, AS ; Staebler, A ; Karlan, BY ; Rodriguez-Antona, C ; Bowtell, DD ; Goode, EL ; Hogdall, E ; Candido dos Reis, FJ ; Gronwald, J ; Chang-Claude, J ; Moysich, KB ; Kelemen, LE ; Cook, LS ; Goodman, MT ; Fasching, PA ; Crawford, R ; Deen, S ; Menon, U ; Huntsman, DG ; Kobel, M ; Ramus, SJ ; Pharoah, PDP ; Brenton, JD (SPRINGERNATURE, 2020-09-01)
    BACKGROUND: PTEN loss is a putative driver in histotypes of ovarian cancer (high-grade serous (HGSOC), endometrioid (ENOC), clear cell (CCOC), mucinous (MOC), low-grade serous (LGSOC)). We aimed to characterise PTEN expression as a biomarker in epithelial ovarian cancer in a large population-based study. METHODS: Tumours from 5400 patients from a multicentre observational, prospective cohort study of the Ovarian Tumour Tissue Analysis Consortium were used to evaluate associations between immunohistochemical PTEN patterns and overall survival time, age, stage, grade, residual tumour, CD8+ tumour-infiltrating lymphocytes (TIL) counts, expression of oestrogen receptor (ER), progesterone receptor (PR) and androgen receptor (AR) by means of Cox proportional hazard models and generalised Cochran-Mantel-Haenszel tests. RESULTS: Downregulation of cytoplasmic PTEN expression was most frequent in ENOC (most frequently in younger patients; p value = 0.0001) and CCOC and was associated with longer overall survival in HGSOC (hazard ratio: 0.78, 95% CI: 0.65-0.94, p value = 0.022). PTEN expression was associated with ER, PR and AR expression (p values: 0.0008, 0.062 and 0.0002, respectively) in HGSOC and with lower CD8 counts in CCOC (p value < 0.0001). Heterogeneous expression of PTEN was more prevalent in advanced HGSOC (p value = 0.019) and associated with higher CD8 counts (p value = 0.0016). CONCLUSIONS: PTEN loss is a frequent driver in ovarian carcinoma associating distinctly with expression of hormonal receptors and CD8+ TIL counts in HGSOC and CCOC histotypes.