Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 22
  • Item
    No Preview Available
    Identification of Novel Therapeutic Targets in Microdissected Clear Cell Ovarian Cancers
    Stany, MP ; Vathipadiekal, V ; Ozbun, L ; Stone, RL ; Mok, SC ; Xue, H ; Kagami, T ; Wang, Y ; McAlpine, JN ; Bowtell, D ; Gout, PW ; Miller, DM ; Gilks, CB ; Huntsman, DG ; Ellard, SL ; Wang, Y-Z ; Vivas-Mejia, P ; Lopez-Berestein, G ; Sood, AK ; Birrer, MJ ; Creighton, C (PUBLIC LIBRARY SCIENCE, 2011-07-06)
    Clear cell ovarian cancer is an epithelial ovarian cancer histotype that is less responsive to chemotherapy and carries poorer prognosis than serous and endometrioid histotypes. Despite this, patients with these tumors are treated in a similar fashion as all other ovarian cancers. Previous genomic analysis has suggested that clear cell cancers represent a unique tumor subtype. Here we generated the first whole genomic expression profiling using epithelial component of clear cell ovarian cancers and normal ovarian surface specimens isolated by laser capture microdissection. All the arrays were analyzed using BRB ArrayTools and PathwayStudio software to identify the signaling pathways. Identified pathways validated using serous, clear cell cancer cell lines and RNAi technology. In vivo validations carried out using an orthotopic mouse model and liposomal encapsulated siRNA. Patient-derived clear cell and serous ovarian tumors were grafted under the renal capsule of NOD-SCID mice to evaluate the therapeutic potential of the identified pathway. We identified major activated pathways in clear cells involving in hypoxic cell growth, angiogenesis, and glucose metabolism not seen in other histotypes. Knockdown of key genes in these pathways sensitized clear cell ovarian cancer cell lines to hypoxia/glucose deprivation. In vivo experiments using patient derived tumors demonstrate that clear cell tumors are exquisitely sensitive to antiangiogenesis therapy (i.e. sunitinib) compared with serous tumors. We generated a histotype specific, gene signature associated with clear cell ovarian cancer which identifies important activated pathways critical for their clinicopathologic characteristics. These results provide a rational basis for a radically different treatment for ovarian clear cell patients.
  • Item
    Thumbnail Image
    The Antioxidant N-Acetylcysteine Prevents HIF-1 Stabilization under Hypoxia In Vitro but Does Not Affect Tumorigenesis in Multiple Breast Cancer Models In Vivo
    Sceneay, J ; Liu, MCP ; Chen, A ; Wong, CSF ; Bowtell, DDL ; Moeller, A ; Lawson, V (PUBLIC LIBRARY SCIENCE, 2013-06-20)
    Intratumoral hypoxia is a poor prognostic factor associated with reduced disease-free survival in many cancer types, including breast cancer. Hypoxia encourages tumor cell proliferation, stimulates angiogenesis and lymphangiogenesis, and promotes epithelial-mesenchymal transition and metastasis. Tumor cells respond to a hypoxic state by stabilizing the Hif-1α subunit of the Hypoxia-Inducible Factor (HIF) transcription factor to promote expression of various tumor- and metastasis-promoting hypoxic response genes. The antioxidant N-acetylcysteine (NAC) was recently shown to prevent Hif-1α stabilization under hypoxia, and has been identified as a potential alternative method to target the hypoxic response in tumors. We utilized three orthotopic syngeneic murine models of breast cancer, the PyMT, EO771 and 4T1.2 models, to investigate the ability of NAC to modulate the hypoxic response in vitro and in vivo. While NAC prevented Hif-1α stabilization under hypoxia in vitro and increased levels of glutathione in the blood of mice in vivo, this did not translate to a difference in tumor growth or the hypoxic state of the tumor compared to untreated control mice. In addition, NAC treatment actually increased metastatic burden in an experimental metastasis model. This work raises questions regarding the validity of NAC as an anti-tumorigenic agent in breast cancer, and highlights the need to further investigate its properties in vivo in different cancer models.
  • Item
    Thumbnail Image
    Deregulation of MYCN, LIN28B and LET7 in a Molecular Subtype of Aggressive High-Grade Serous Ovarian Cancers
    Helland, A ; Anglesio, MS ; George, J ; Cowin, PA ; Johnstone, CN ; House, CM ; Sheppard, KE ; Etemadmoghadam, D ; Melnyk, N ; Rustgi, AK ; Phillips, WA ; Johnsen, H ; Holm, R ; Kristensen, GB ; Birrer, MJ ; Pearson, RB ; Borresen-Dale, A-L ; Huntsman, DG ; deFazio, A ; Creighton, CJ ; Smyth, GK ; Bowtell, DDL ; Tan, P (PUBLIC LIBRARY SCIENCE, 2011-04-13)
    Molecular subtypes of serous ovarian cancer have been recently described. Using data from independent datasets including over 900 primary tumour samples, we show that deregulation of the Let-7 pathway is specifically associated with the C5 molecular subtype of serous ovarian cancer. DNA copy number and gene expression of HMGA2, alleles of Let-7, LIN28, LIN28B, MYC, MYCN, DICER1, and RNASEN were measured using microarray and quantitative reverse transcriptase PCR. Immunohistochemistry was performed on 127 samples using tissue microarrays and anti-HMGA2 antibodies. Fluorescence in situ hybridisation of bacterial artificial chromosomes hybridized to 239 ovarian tumours was used to measure translocation at the LIN28B locus. Short interfering RNA knockdown in ovarian cell lines was used to test the functionality of associations observed. Four molecular subtypes (C1, C2, C4, C5) of high-grade serous ovarian cancers were robustly represented in each dataset and showed similar pattern of patient survival. We found highly specific activation of a pathway involving MYCN, LIN28B, Let-7 and HMGA2 in the C5 molecular subtype defined by MYCN amplification and over-expression, over-expression of MYCN targets including the Let-7 repressor LIN28B, loss of Let-7 expression and HMGA2 amplification and over-expression. DICER1, a known Let-7 target, and RNASEN were over-expressed in C5 tumours. We saw no evidence of translocation at the LIN28B locus in C5 tumours. The reported interaction between LIN28B and Let-7 was recapitulated by siRNA knockdown in ovarian cancer cell lines. Our results associate deregulation of MYCN and downstream targets, including Let-7 and oncofetal genes, with serous ovarian cancer. We define for the first time how elements of an oncogenic pathway, involving multiple genes that contribute to stem cell renewal, is specifically altered in a molecular subtype of serous ovarian cancer. By defining the drivers of a molecular subtype of serous ovarian cancers we provide a novel strategy for targeted therapeutic intervention.
  • Item
    Thumbnail Image
    Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary
    Ahmed, AA ; Etemadmoghadam, D ; Temple, J ; Lynch, AG ; Riad, M ; Sharma, R ; Stewart, C ; Fereday, S ; Caldas, C ; DeFazio, A ; Bowtell, D ; Brenton, JD (WILEY, 2010-05)
    Numerous studies have tested the association between TP53 mutations in ovarian cancer and prognosis but these have been consistently confounded by limitations in study design, methodology, and/or heterogeneity in the sample cohort. High-grade serous (HGS) carcinoma is the most clinically important histological subtype of ovarian cancer. As these tumours may arise from the ovary, Fallopian tube or peritoneum, they are collectively referred to as high-grade pelvic serous carcinoma (HGPSC). To identify the true prevalence of TP53 mutations in HGPSC, we sequenced exons 2-11 and intron-exon boundaries in tumour DNA from 145 patients. HGPSC cases were defined as having histological grade 2 or 3 and FIGO stage III or IV. Surprisingly, pathogenic TP53 mutations were identified in 96.7% (n = 119/123) of HGPSC cases. Molecular and pathological review of mutation-negative cases showed evidence of p53 dysfunction associated with copy number gain of MDM2 or MDM4, or indicated the exclusion of samples as being low-grade serous tumours or carcinoma of uncertain primary site. Overall, p53 dysfunction rate approached 100% of confirmed HGPSCs. No association between TP53 mutation and progression-free or overall survival was found. From this first comprehensive mapping of TP53 mutation rate in a homogeneous group of HGPSC patients, we conclude that mutant TP53 is a driver mutation in the pathogenesis of HGPSC cancers. Because TP53 mutation is almost invariably present in HGPSC, it is not of substantial prognostic or predictive significance.
  • Item
    Thumbnail Image
    Comparison of Expression Profiles in Ovarian Epithelium In Vivo and Ovarian Cancer Identifies Novel Candidate Genes Involved in Disease Pathogenesis
    Emmanuel, C ; Gava, N ; Kennedy, C ; Balleine, RL ; Sharma, R ; Wain, G ; Brand, A ; Hogg, R ; Etemadmoghadam, D ; George, J ; Birrer, MJ ; Clarke, CL ; Chenevix-Trench, G ; Bowtell, DDL ; Harnett, PR ; deFazio, A ; Preiss, T (PUBLIC LIBRARY SCIENCE, 2011-03-15)
    Molecular events leading to epithelial ovarian cancer are poorly understood but ovulatory hormones and a high number of life-time ovulations with concomitant proliferation, apoptosis, and inflammation, increases risk. We identified genes that are regulated during the estrous cycle in murine ovarian surface epithelium and analysed these profiles to identify genes dysregulated in human ovarian cancer, using publically available datasets. We identified 338 genes that are regulated in murine ovarian surface epithelium during the estrous cycle and dysregulated in ovarian cancer. Six of seven candidates selected for immunohistochemical validation were expressed in serous ovarian cancer, inclusion cysts, ovarian surface epithelium and in fallopian tube epithelium. Most were overexpressed in ovarian cancer compared with ovarian surface epithelium and/or inclusion cysts (EpCAM, EZH2, BIRC5) although BIRC5 and EZH2 were expressed as highly in fallopian tube epithelium as in ovarian cancer. We prioritised the 338 genes for those likely to be important for ovarian cancer development by in silico analyses of copy number aberration and mutation using publically available datasets and identified genes with established roles in ovarian cancer as well as novel genes for which we have evidence for involvement in ovarian cancer. Chromosome segregation emerged as an important process in which genes from our list of 338 were over-represented including two (BUB1, NCAPD2) for which there is evidence of amplification and mutation. NUAK2, upregulated in ovarian surface epithelium in proestrus and predicted to have a driver mutation in ovarian cancer, was examined in a larger cohort of serous ovarian cancer where patients with lower NUAK2 expression had shorter overall survival. In conclusion, defining genes that are activated in normal epithelium in the course of ovulation that are also dysregulated in cancer has identified a number of pathways and novel candidate genes that may contribute to the development of ovarian cancer.
  • Item
    Thumbnail Image
    The expression of the ubiquitin ligase SIAH2 (seven in absentia homolog 2) is mediated through gene copy number in breast cancer and is associated with a basal-like phenotype and p53 expression
    Chan, P ; Moeller, A ; Liu, MCP ; Sceneay, JE ; Wong, CSF ; Waddell, N ; Huang, KT ; Dobrovic, A ; Millar, EKA ; O'Toole, SA ; McNeil, CM ; Sutherland, RL ; Bowtell, DD ; Fox, SB (BIOMED CENTRAL LTD, 2011)
    INTRODUCTION: The seven in absentia homolog 2 (SIAH2) protein plays a significant role in the hypoxic response by regulating the abundance of hypoxia-inducible factor-α; however, its role in breast carcinoma is unclear. We investigated the frequency and expression pattern of SIAH2 in two independent cohorts of sporadic breast cancers. METHODS: Immunohistochemical evaluation of SIAH2protein expression was conducted in normal breast tissues and in tissue microarrays comprising ductal carcinoma in situ (DCIS) and a cohort of invasive breast carcinomas. Correlation analysis was performed between SIAH2 and clinicopathological variables and intrinsic breast cancer subgroups and validated in a cohort of 293 invasive ductal carcinomas. Promoter methylation, gene copy number and mRNA expression of SIAH2 were determined in a panel of basal-like tumors and cell lines. RESULTS: There was a significant increase in nuclear SIAH2 expression from normal breast tissues through to DCIS and progression to invasive cancers. A significant inverse correlation was apparent between SIAH2 and estrogen receptor and progesterone receptor and a positive association with tumor grade, HER2, p53 and an intrinsic basal-like subtype. Logistic regression analysis confirmed the significant positive association between SIAH2 expression and the basal-like phenotype. No SIAH2 promoter methylation was identified, yet there was a significant correlation between SIAH2 mRNA and gene copy number. SIAH2-positive tumors were associated with a shorter relapse-free survival in univariate but not multivariate analysis. CONCLUSIONS: SIAH2 expression is upregulated in basal-like breast cancers via copy number changes and/or transcriptional activation by p53 and is likely to be partly responsible for the enhanced hypoxic drive through abrogation of the prolyl hydroxylases.
  • Item
    Thumbnail Image
    Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes
    McBride, DJ ; Etemadmoghadam, D ; Cooke, SL ; Alsop, K ; George, J ; Butler, A ; Cho, J ; Galappaththige, D ; Greenman, C ; Howarth, KD ; Lau, KW ; Ng, CK ; Raine, K ; Teague, J ; Wedge, DC ; Caubit, X ; Stratton, MR ; Brenton, JD ; Campbell, PJ ; Futreal, PA ; Bowtell, DDL (WILEY, 2012-08)
    The application of paired-end next generation sequencing approaches has made it possible to systematically characterize rearrangements of the cancer genome to base-pair level. Utilizing this approach, we report the first detailed analysis of ovarian cancer rearrangements, comparing high-grade serous and clear cell cancers, and these histotypes with other solid cancers. Somatic rearrangements were systematically characterized in eight high-grade serous and five clear cell ovarian cancer genomes and we report here the identification of > 600 somatic rearrangements. Recurrent rearrangements of the transcriptional regulator gene, TSHZ3, were found in three of eight serous cases. Comparison to breast, pancreatic and prostate cancer genomes revealed that a subset of ovarian cancers share a marked tandem duplication phenotype with triple-negative breast cancers. The tandem duplication phenotype was not linked to BRCA1/2 mutation, suggesting that other common mechanisms or carcinogenic exposures are operative. High-grade serous cancers arising in women with germline BRCA1 or BRCA2 mutation showed a high frequency of small chromosomal deletions. These findings indicate that BRCA1/2 germline mutation may contribute to widespread structural change and that other undefined mechanism(s), which are potentially shared with triple-negative breast cancer, promote tandem chromosomal duplications that sculpt the ovarian cancer genome.
  • Item
    Thumbnail Image
    MicroRNA Genes and Their Target 3′-Untranslated Regions Are Infrequently Somatically Mutated in Ovarian Cancers
    Ryland, GL ; Bearfoot, JL ; Doyle, MA ; Boyle, SE ; Choong, DYH ; Rowley, SM ; Tothill, RW ; Gorringe, KL ; Campbell, IG ; Cooney, AJ (PUBLIC LIBRARY SCIENCE, 2012-04-20)
    MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3'-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3'-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3'-untranslated regions are thus uncommon in ovarian cancer.
  • Item
    Thumbnail Image
    Copy Number Analysis Identifies Novel Interactions Between Genomic Loci in Ovarian Cancer
    Gorringe, KL ; George, J ; Anglesio, MS ; Ramakrishna, M ; Etemadmoghadam, D ; Cowin, P ; Sridhar, A ; Williams, LH ; Boyle, SE ; Yanaihara, N ; Okamoto, A ; Urashima, M ; Smyth, GK ; Campbell, IG ; Bowtell, DDL ; Jordan, IK (PUBLIC LIBRARY SCIENCE, 2010-09-10)
    Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA) data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions.
  • Item
    Thumbnail Image
    Amplicon-Dependent CCNE1 Expression Is Critical for Clonogenic Survival after Cisplatin Treatment and Is Correlated with 20q11 Gain in Ovarian Cancer
    Etemadmoghadam, D ; George, J ; Cowin, PA ; Cullinane, C ; Kansara, M ; Gorringe, KL ; Smyth, GK ; Bowtell, DDL ; Wong, N (PUBLIC LIBRARY SCIENCE, 2010-11-12)
    Genomic amplification of 19q12 occurs in several cancer types including ovarian cancer where it is associated with primary treatment failure. We systematically attenuated expression of genes within the minimally defined 19q12 region in ovarian cell lines using short-interfering RNAs (siRNA) to identify driver oncogene(s) within the amplicon. Knockdown of CCNE1 resulted in G1/S phase arrest, reduced cell viability and apoptosis only in amplification-carrying cells. Although CCNE1 knockdown increased cisplatin resistance in short-term assays, clonogenic survival was inhibited after treatment. Gain of 20q11 was highly correlated with 19q12 amplification and spanned a 2.5 Mb region including TPX2, a centromeric protein required for mitotic spindle function. Expression of TPX2 was highly correlated with gene amplification and with CCNE1 expression in primary tumors. siRNA inhibition of TPX2 reduced cell viability but this effect was not amplicon-dependent. These findings demonstrate that CCNE1 is a key driver in the 19q12 amplicon required for survival and clonogenicity in cells with locus amplification. Co-amplification at 19q12 and 20q11 implies the presence of a cooperative mutational network. These observations have implications for the application of targeted therapies in CCNE1 dependent ovarian cancers.