Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    No Preview Available
    COMPLEXO: identifying the missing heritability of breast cancer via next generation collaboration
    Southey, MC ; Park, DJ ; Nguyen-Dumont, T ; Campbell, I ; Thompson, E ; Trainer, AH ; Chenevix-Trench, G ; Simard, J ; Dumont, M ; Soucy, P ; Thomassen, M ; Jonson, L ; Pedersen, IS ; Hansen, TVO ; Nevanlinna, H ; Khan, S ; Sinilnikova, O ; Mazoyer, S ; Lesueur, F ; Damiola, F ; Schmutzler, R ; Meindl, A ; Hahnen, E ; Dufault, MR ; Chan, TC ; Kwong, A ; Barkardottir, R ; Radice, P ; Peterlongo, P ; Devilee, P ; Hilbers, F ; Benitez, J ; Kvist, A ; Torngren, T ; Easton, D ; Hunter, D ; Lindstrom, S ; Kraft, P ; Zheng, W ; Gao, Y-T ; Long, J ; Ramus, S ; Feng, B-J ; Weitzel, RN ; Nathanson, K ; Offit, K ; Joseph, V ; Robson, M ; Schrader, K ; Wang, SM ; Kim, YC ; Lynch, H ; Snyder, C ; Tavtigian, S ; Neuhausen, S ; Couch, FJ ; Goldgar, DE (BMC, 2013)
    Linkage analysis, positional cloning, candidate gene mutation scanning and genome-wide association study approaches have all contributed significantly to our understanding of the underlying genetic architecture of breast cancer. Taken together, these approaches have identified genetic variation that explains approximately 30% of the overall familial risk of breast cancer, implying that more, and likely rarer, genetic susceptibility alleles remain to be discovered.
  • Item
    Thumbnail Image
    Exome Sequencing Identifies Rare Deleterious Mutations in DNA Repair Genes FANCC and BLM as Potential Breast Cancer Susceptibility Alleles
    Thompson, ER ; Doyle, MA ; Ryland, GL ; Rowley, SM ; Choong, DYH ; Tothill, RW ; Thorne, H ; Barnes, DR ; Li, J ; Ellul, J ; Philip, GK ; Antill, YC ; James, PA ; Trainer, AH ; Mitchell, G ; Campbell, IG ; Horwitz, MS (PUBLIC LIBRARY SCIENCE, 2012-09)
    Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.
  • Item
    Thumbnail Image
    Prevalence of PALB2 mutations in Australian familial breast cancer cases and controls
    Thompson, ER ; Gorringe, KL ; Rowley, SM ; Wong-Brown, MW ; McInerny, S ; Li, N ; Trainer, AH ; Devereux, L ; Doyle, MA ; Li, J ; Lupat, R ; Delatycki, MB ; Mitchell, G ; James, PA ; Scott, RJ ; Campbell, IG (BMC, 2015-08-19)
    INTRODUCTION: PALB2 is emerging as a high-penetrance breast cancer predisposition gene in the order of BRCA1 and BRCA2. However, large studies that have evaluated the full gene rather than just the most common variants in both cases and controls are required before all truncating variants can be included in familial breast cancer variant testing. METHODS: In this study we analyse almost 2000 breast cancer cases sourced from individuals referred to familial cancer clinics, thus representing typical cases presenting in clinical practice. These cases were compared to a similar number of population-based cancer-free controls. RESULTS: We identified a significant excess of truncating variants in cases (1.3 %) versus controls (0.2 %), including six novel variants (p = 0.0001; odds ratio (OR) 6.58, 95 % confidence interval (CI) 2.3-18.9). Three of the four control individuals carrying truncating variants had at least one relative with breast cancer. There was no excess of missense variants in cases overall, but the common c.1676A > G variant (rs152451) was significantly enriched in cases and may represent a low-penetrance polymorphism (p = 0.002; OR 1.24 (95 % CI 1.09-1.47). CONCLUSIONS: Our findings support truncating variants in PALB2 as high-penetrance breast cancer susceptibility alleles, and suggest that a common missense variant may also lead to a low level of increased breast cancer risk.
  • Item
    Thumbnail Image
    Reevaluation of the BRCA2 truncating allele c.9976A > T (p.Lys3326Ter) in a familial breast cancer context
    Thompson, ER ; Gorringe, KL ; Rowley, SM ; Li, N ; McInerny, S ; Wong-Brown, MW ; Devereux, L ; Li, J ; Trainer, AH ; Mitchell, G ; Scott, RJ ; James, PA ; Campbell, IG (NATURE PORTFOLIO, 2015-10-12)
    The breast cancer predisposition gene, BRCA2, has a large number of genetic variants of unknown effect. The variant rs11571833, an A > T transversion in the final exon of the gene that leads to the creation of a stop codon 93 amino acids early (K3326*), is reported as a neutral polymorphism but there is some evidence to suggest an association with an increased risk of breast cancer. We assessed whether this variant was enriched in a cohort of breast cancer cases ascertained through familial cancer clinics compared to population-based non-cancer controls using a targeted sequencing approach. We identified the variant in 66/2634 (2.5%) cases and 33/1996 (1.65%) controls, indicating an enrichment in the breast cancer cases (p = 0.047, OR 1.53, 95% CI 1.00-2.34). This data is consistent with recent iCOGs data suggesting that this variant is not neutral with respect to breast cancer risk. rs11571833 may need to be included in SNP panels for evaluating breast cancer risk.
  • Item
    Thumbnail Image
    Bioinformatics Pipelines for Targeted Resequencing and Whole-Exome Sequencing of Human and Mouse Genomes: A Virtual Appliance Approach for Instant Deployment
    Li, J ; Doyle, MA ; Saeed, I ; Wong, SQ ; Mar, V ; Goode, DL ; Caramia, F ; Doig, K ; Ryland, GL ; Thompson, ER ; Hunter, SM ; Halgamuge, SK ; Ellul, J ; Dobrovic, A ; Campbell, IG ; Papenfuss, AT ; McArthur, GA ; Tothill, RW ; Calogero, RA (PUBLIC LIBRARY SCIENCE, 2014-04-21)
    Targeted resequencing by massively parallel sequencing has become an effective and affordable way to survey small to large portions of the genome for genetic variation. Despite the rapid development in open source software for analysis of such data, the practical implementation of these tools through construction of sequencing analysis pipelines still remains a challenging and laborious activity, and a major hurdle for many small research and clinical laboratories. We developed TREVA (Targeted REsequencing Virtual Appliance), making pre-built pipelines immediately available as a virtual appliance. Based on virtual machine technologies, TREVA is a solution for rapid and efficient deployment of complex bioinformatics pipelines to laboratories of all sizes, enabling reproducible results. The analyses that are supported in TREVA include: somatic and germline single-nucleotide and insertion/deletion variant calling, copy number analysis, and cohort-based analyses such as pathway and significantly mutated genes analyses. TREVA is flexible and easy to use, and can be customised by Linux-based extensions if required. TREVA can also be deployed on the cloud (cloud computing), enabling instant access without investment overheads for additional hardware. TREVA is available at http://bioinformatics.petermac.org/treva/.
  • Item
    Thumbnail Image
    CONTRA: copy number analysis for targeted resequencing
    Li, J ; Lupat, R ; Amarasinghe, KC ; Thompson, ER ; Doyle, MA ; Ryland, GL ; Tothill, RW ; Halgamuge, SK ; Campbell, IG ; Gorringe, KL (OXFORD UNIV PRESS, 2012-05-15)
    MOTIVATION: In light of the increasing adoption of targeted resequencing (TR) as a cost-effective strategy to identify disease-causing variants, a robust method for copy number variation (CNV) analysis is needed to maximize the value of this promising technology. RESULTS: We present a method for CNV detection for TR data, including whole-exome capture data. Our method calls copy number gains and losses for each target region based on normalized depth of coverage. Our key strategies include the use of base-level log-ratios to remove GC-content bias, correction for an imbalanced library size effect on log-ratios, and the estimation of log-ratio variations via binning and interpolation. Our methods are made available via CONTRA (COpy Number Targeted Resequencing Analysis), a software package that takes standard alignment formats (BAM/SAM) and outputs in variant call format (VCF4.0), for easy integration with other next-generation sequencing analysis packages. We assessed our methods using samples from seven different target enrichment assays, and evaluated our results using simulated data and real germline data with known CNV genotypes.
  • Item
    Thumbnail Image
    Evaluating the breast cancer predisposition role of rare variants in genes associated with low-penetrance breast cancer risk SNPs
    Li, N ; Rowley, SM ; Thompson, ER ; McInerny, S ; Devereux, L ; Amarasinghe, KC ; Zethoven, M ; Lupat, R ; Goode, D ; Li, J ; Trainer, AH ; Gorringe, KL ; James, PA ; Campbell, IG (BIOMED CENTRAL LTD, 2018-01-09)
    BACKGROUND: Genome-wide association studies (GWASs) have identified numerous single-nucleotide polymorphisms (SNPs) associated with small increases in breast cancer risk. Studies to date suggest that some SNPs alter the expression of the associated genes, which potentially mediates risk modification. On this basis, we hypothesised that some of these genes may be enriched for rare coding variants associated with a higher breast cancer risk. METHODS: The coding regions and exon-intron boundaries of 56 genes that have either been proposed by GWASs to be the regulatory targets of the SNPs and/or located < 500 kb from the risk SNPs were sequenced in index cases from 1043 familial breast cancer families that previously had negative test results for BRCA1 and BRCA2 mutations and 944 population-matched cancer-free control participants from an Australian population. Rare (minor allele frequency ≤ 0.001 in the Exome Aggregation Consortium and Exome Variant Server databases) loss-of-function (LoF) and missense variants were studied. RESULTS: LoF variants were rare in both the cases and control participants across all the candidate genes, with only 38 different LoF variants observed in a total of 39 carriers. For the majority of genes (n = 36), no LoF variants were detected in either the case or control cohorts. No individual gene showed a significant excess of LoF or missense variants in the cases compared with control participants. Among all candidate genes as a group, the total number of carriers with LoF variants was higher in the cases than in the control participants (26 cases and 13 control participants), as was the total number of carriers with missense variants (406 versus 353), but neither reached statistical significance (p = 0.077 and p = 0.512, respectively). The genes contributing most of the excess of LoF variants in the cases included TET2, NRIP1, RAD51B and SNX32 (12 cases versus 2 control participants), whereas ZNF283 and CASP8 contributed largely to the excess of missense variants (25 cases versus 8 control participants). CONCLUSIONS: Our data suggest that rare LoF and missense variants in genes associated with low-penetrance breast cancer risk SNPs may contribute some additional risk, but as a group these genes are unlikely to be major contributors to breast cancer heritability.
  • Item
    Thumbnail Image
    Analysis of KLLN as a high-penetrance breast cancer predisposition gene
    Thompson, ER ; Gorringe, KL ; Choong, DYH ; Eccles, DM ; Mitchell, G ; Campbell, IG (SPRINGER, 2012-07)
    KLLN is a p53 target gene with DNA binding function and represents a highly plausible candidate breast cancer predisposition gene. We screened for predisposing variants in 860 high-risk breast cancer families using high resolution melt analysis. A germline c.339_340delAG variant predicted to cause premature termination of the protein after 57 alternative amino acid residues was identified in 3/860 families who tested negative for BRCA1 and BRCA2 mutations and in 1/84 sporadic breast cancer cases. However, the variant was also detected in 2/182 families with known BRCA1 or BRCA2 mutations and in 2/464 non-cancer controls. Furthermore, loss of the mutant allele was detected in 2/2 breast tumors. Our data suggest that pathogenic mutations in KLLN are rare in breast cancer families and the c.339_340delAG variant does not represent a high-penetrance breast cancer risk allele.
  • Item
    No Preview Available
    No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing
    Easton, DF ; Lesueur, F ; Decker, B ; Michailidou, K ; Li, J ; Allen, J ; Luccarini, C ; Pooley, KA ; Shah, M ; Bolla, MK ; Wang, Q ; Dennis, J ; Ahmad, J ; Thompson, ER ; Damiola, F ; Pertesi, M ; Voegele, C ; Mebirouk, N ; Robinot, N ; Durand, G ; Forey, N ; Luben, RN ; Ahmed, S ; Aittomaki, K ; Anton-Culver, H ; Arndt, V ; Baynes, C ; Beckman, MW ; Benitez, J ; Van Den Berg, D ; Blot, WJ ; Bogdanova, NV ; Bojesen, SE ; Brenner, H ; Chang-Claude, J ; Chia, KS ; Choi, J-Y ; Conroy, DM ; Cox, A ; Cross, SS ; Czene, K ; Darabi, H ; Devilee, P ; Eriksson, M ; Fasching, PA ; Figueroa, J ; Flyger, H ; Fostira, F ; Garcia-Closas, M ; Giles, GG ; Glendon, G ; Gonzalez-Neira, A ; Guenel, P ; Haiman, CA ; Hall, P ; Hart, SN ; Hartman, M ; Hooning, MJ ; Hsiung, C-N ; Ito, H ; Jakubowska, A ; James, PA ; John, EM ; Johnson, N ; Jones, M ; Kabisch, M ; Kang, D ; Kosma, V-M ; Kristensen, V ; Lambrechts, D ; Li, N ; Lindblom, A ; Long, J ; Lophatananon, A ; Lubinski, J ; Mannermaa, A ; Manoukian, S ; Margolin, S ; Matsuo, K ; Meindl, A ; Mitchell, G ; Muir, K ; Nevelsteen, I ; van den Ouweland, A ; Peterlongo, P ; Phuah, SY ; Pylkas, K ; Rowley, SM ; Sangrajrang, S ; Schmutzler, RK ; Shen, C-Y ; Shu, X-O ; Southey, MC ; Surowy, H ; Swerdlow, A ; Teo, SH ; Tollenaar, RAEM ; Tomlinson, I ; Torres, D ; Truong, T ; Vachon, C ; Verhoef, S ; Wong-Brown, M ; Zheng, W ; Zheng, Y ; Nevanlinna, H ; Scott, RJ ; Andrulis, IL ; Wu, AH ; Hopper, JL ; Couch, FJ ; Winqvist, R ; Burwinkel, B ; Sawyer, EJ ; Schmidt, MK ; Rudolph, A ; Doerk, T ; Brauch, H ; Hamann, U ; Neuhausen, SL ; Milne, RL ; Fletcher, O ; Pharoah, PDP ; Campbell, IG ; Dunning, AM ; Le Calvez-Kelm, F ; Goldgar, DE ; Tavtigian, SV ; Chenevix-Trench, G (BMJ PUBLISHING GROUP, 2016-05)
    BACKGROUND: BRCA1 interacting protein C-terminal helicase 1 (BRIP1) is one of the Fanconi Anaemia Complementation (FANC) group family of DNA repair proteins. Biallelic mutations in BRIP1 are responsible for FANC group J, and previous studies have also suggested that rare protein truncating variants in BRIP1 are associated with an increased risk of breast cancer. These studies have led to inclusion of BRIP1 on targeted sequencing panels for breast cancer risk prediction. METHODS: We evaluated a truncating variant, p.Arg798Ter (rs137852986), and 10 missense variants of BRIP1, in 48 144 cases and 43 607 controls of European origin, drawn from 41 studies participating in the Breast Cancer Association Consortium (BCAC). Additionally, we sequenced the coding regions of BRIP1 in 13 213 cases and 5242 controls from the UK, 1313 cases and 1123 controls from three population-based studies as part of the Breast Cancer Family Registry, and 1853 familial cases and 2001 controls from Australia. RESULTS: The rare truncating allele of rs137852986 was observed in 23 cases and 18 controls in Europeans in BCAC (OR 1.09, 95% CI 0.58 to 2.03, p=0.79). Truncating variants were found in the sequencing studies in 34 cases (0.21%) and 19 controls (0.23%) (combined OR 0.90, 95% CI 0.48 to 1.70, p=0.75). CONCLUSIONS: These results suggest that truncating variants in BRIP1, and in particular p.Arg798Ter, are not associated with a substantial increase in breast cancer risk. Such observations have important implications for the reporting of results from breast cancer screening panels.