Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Feasibility of biology-guided radiotherapy using PSMA-PET to boost to dominant intraprostatic tumour
    Gaudreault, M ; Chang, D ; Hardcastle, N ; Jackson, P ; Kron, T ; Hofman, MS ; Siva, S (ELSEVIER IRELAND LTD, 2022-07)
    BACKGROUND: Biology-guided radiotherapy (BgRT) delivers dose to tumours triggered from positron emission tomography (PET) detection. Prostate specific membrane antigen (PSMA) PET uptake is abundant in the dominant intraprostatic lesion (DIL). This study investigates the feasibility of BgRT to PSMA-avid subvolume in the prostate region. METHODS: Patients enrolled in the prospective randomized trial ProPSMA at our institution were included (ID: ANZCTR12617000005358). Gross tumour volumes (GTVs) were delineated on the PET component of a PET/CT scan from a standardized uptake value (SUV) threshold technique. Suitability for BgRT requires a strong signal-to-background ratio with a surrounding tissue free of significant PSMA uptake. The signal-to-background ratio was quantified from the calculation of the normalized SUV (nSUV), defined as the ratio between SUVmax within the GTV and SUVmean inside a 3D margin expansion of the GTV. The PSMA distribution surrounding the tumour was quantified as a function of the distance from the GTV. RESULTS: In this cohort of 84 patients, 83 primary tumours were included. Prostate volume ranged from 19 cm3 to 148 cm3 (median = 52 cm3; IQR = 39 cm3 - 63 cm3). SUVmax inside the prostate was between 2 and 125 (median = 19; IQR = 11 - 30). More than 50% of GTVs generated with threshold between 25%SUVmax (median volume = 10.0 cm3; IQR = 4.5 cm3 - 20.0 cm3) and 50%SUVmax (median volume = 1.9 cm3; IQR = 1.1 cm3 - 3.8 cm3) were suitable for BgRT by using nSUV ≥ 3 and a margin expansion of 5 mm. CONCLUSIONS: It is feasible to identify GTVs suitable for BgRT in the prostate. These GTVs are characterized by a strong signal-to-background ratio and a surrounding tissue free of PSMA uptake.
  • Item
    Thumbnail Image
    Utility of Biology-Guided Radiotherapy to De Novo Metastases Diagnosed During Staging of High-Risk Biopsy-Proven Prostate Cancer
    Gaudreault, M ; Chang, D ; Hardcastle, N ; Jackson, P ; Kron, T ; Hanna, GG ; Hofman, MS ; Siva, S (FRONTIERS MEDIA SA, 2022-04-12)
    BACKGROUND: Biology-guided radiotherapy (BgRT) uses real-time functional imaging to guide radiation therapy treatment. Positron emission tomography (PET) tracers targeting prostate-specific membrane antigen (PSMA) are superior for prostate cancer detection than conventional imaging. This study aims at describing nodal and distant metastasis distribution from prostate cancer and at determining the proportion of metastatic lesions suitable for BgRT. METHODS: A single-institution patient subset from the ProPSMA trial (ID ACTRN12617000005358) was analysed. Gross tumour volumes (GTV) were delineated on the CT component of a PSMA PET/CT scan. To determine the suitability of BgRT tracking zones, the normalized SUV (nSUV) was calculated as the ratio of SUVmax inside the GTV to the SUVmean of adjacent three-dimensional shells of thickness 5 mm/10 mm/20 mm as a measure of signal to background contrast. Targets were suitable for BgRT if (1) nSUV was larger than an nSUV threshold and (2) non-tumour tissue inside adjacent shell was free of PET-avid uptake. RESULTS: Of this cohort of 84 patients, 24 had at least one pelvic node or metastatic site disease, 1 to 13 lesions per patient, with a total of 98 lesions (60 pelvic nodes/38 extra-pelvic nodal diseases and haematogenous metastases). Target volumes ranged from 0.08 to 9.6 cm3 while SUVmax ranged from 2.1 to 55.0. nSUV ranged from 1.9 to 15.7/2.4 to 25.7/2.5 to 34.5 for the 5 mm/10 mm/20 mm shell expansion. Furthermore, 74%/68%/34% of the lesions had nSUV ≥ 3 and were free of PSMA PET uptake inside the GTV outer shell margin expansion of 5 mm/10 mm/20 mm. Adjacent avid organs were another lesion, bladder, bowel, ureter, prostate, and liver. CONCLUSIONS: The majority of PSMA PET/CT-defined radiotherapy targets would be suitable for BgRT by using a 10-mm tracking zone in prostate cancer. A subset of lesions had adjacent non-tumour uptake, mainly due to the proximity of ureter or bladder, and may require exclusion from emission tracking during BgRT.