Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Amplicon-Dependent CCNE1 Expression Is Critical for Clonogenic Survival after Cisplatin Treatment and Is Correlated with 20q11 Gain in Ovarian Cancer
    Etemadmoghadam, D ; George, J ; Cowin, PA ; Cullinane, C ; Kansara, M ; Gorringe, KL ; Smyth, GK ; Bowtell, DDL ; Wong, N (PUBLIC LIBRARY SCIENCE, 2010-11-12)
    Genomic amplification of 19q12 occurs in several cancer types including ovarian cancer where it is associated with primary treatment failure. We systematically attenuated expression of genes within the minimally defined 19q12 region in ovarian cell lines using short-interfering RNAs (siRNA) to identify driver oncogene(s) within the amplicon. Knockdown of CCNE1 resulted in G1/S phase arrest, reduced cell viability and apoptosis only in amplification-carrying cells. Although CCNE1 knockdown increased cisplatin resistance in short-term assays, clonogenic survival was inhibited after treatment. Gain of 20q11 was highly correlated with 19q12 amplification and spanned a 2.5 Mb region including TPX2, a centromeric protein required for mitotic spindle function. Expression of TPX2 was highly correlated with gene amplification and with CCNE1 expression in primary tumors. siRNA inhibition of TPX2 reduced cell viability but this effect was not amplicon-dependent. These findings demonstrate that CCNE1 is a key driver in the 19q12 amplicon required for survival and clonogenicity in cells with locus amplification. Co-amplification at 19q12 and 20q11 implies the presence of a cooperative mutational network. These observations have implications for the application of targeted therapies in CCNE1 dependent ovarian cancers.
  • Item
    No Preview Available
    Resistance to CDK2 Inhibitors Is Associated with Selection of Polyploid Cells in CCNE1-Amplified Ovarian Cancer
    Etemadmoghadam, D ; Au-Yeung, G ; Wall, M ; Mitchell, C ; Kansara, M ; Loehrer, E ; Batzios, C ; George, J ; Ftouni, S ; Weir, BA ; Carter, S ; Gresshoff, I ; Mileshkin, L ; Rischin, D ; Hahn, WC ; Waring, PM ; Getz, G ; Cullinane, C ; Campbell, LJ ; Bowtell, DD (AMER ASSOC CANCER RESEARCH, 2013-11-01)
    PURPOSE: Amplification of cyclin E1 (CCNE1) is associated with poor outcome in breast, lung, and other solid cancers, and is the most prominent structural variant associated with primary treatment failure in high-grade serous ovarian cancer (HGSC). We have previously shown that CCNE1-amplified tumors show amplicon-dependent sensitivity to CCNE1 suppression. Here, we explore targeting CDK2 as a novel therapeutic strategy in CCNE1-amplified cancers and mechanisms of resistance. EXPERIMENTAL DESIGN: We examined the effect of CDK2 suppression using RNA interference and small-molecule inhibitors in SK-OV-3, OVCAR-4, and OVCAR-3 ovarian cancer cell lines. To identify mechanisms of resistance, we derived multiple, independent resistant sublines of OVCAR-3 to CDK2 inhibitors. Resistant cells were extensively characterized by gene expression and copy number analysis, fluorescence-activated cell sorting profiling and conventional karyotyping. In addition, we explored the relationship between CCNE1 amplification and polyploidy using data from primary tumors. RESULTS: We validate CDK2 as a therapeutic target in CCNE1-amplified cells by showing selective sensitivity to suppression, either by gene knockdown or using small-molecule inhibitors. In addition, we identified two resistance mechanisms, one involving upregulation of CDK2 and another novel mechanism involving selection of polyploid cells from the pretreatment tumor population. Our analysis of genomic data shows that polyploidy is a feature of cancer genomes with CCNE1 amplification. CONCLUSIONS: These findings suggest that cyclinE1/CDK2 is an important therapeutic target in HGSC, but that resistance to CDK2 inhibitors may emerge due to upregulation of CDK2 target protein and through preexisting cellular polyploidy.
  • Item
    No Preview Available
    LRP1B Deletion in High-Grade Serous Ovarian Cancers Is Associated with Acquired Chemotherapy Resistance to Liposomal Doxorubicin
    Cowin, PA ; George, J ; Fereday, S ; Loehrer, E ; Van Loo, P ; Cullinane, C ; Etemadmoghadam, D ; Ftouni, S ; Galletta, L ; Anglesio, MS ; Hendley, J ; Bowes, L ; Sheppard, KE ; Christie, EL ; Pearson, RB ; Harnett, PR ; Heinzelmann-Schwarz, V ; Friedlander, M ; McNally, O ; Quinn, M ; Campbell, P ; deFazio, A ; Bowtell, DDL (AMER ASSOC CANCER RESEARCH, 2012-08-15)
    High-grade serous cancer (HGSC), the most common subtype of ovarian cancer, often becomes resistant to chemotherapy, leading to poor patient outcomes. Intratumoral heterogeneity occurs in nearly all solid cancers, including ovarian cancer, contributing to the development of resistance mechanisms. In this study, we examined the spatial and temporal genomic variation in HGSC using high-resolution single-nucleotide polymorphism arrays. Multiple metastatic lesions from individual patients were analyzed along with 22 paired pretreatment and posttreatment samples. We documented regions of differential DNA copy number between multiple tumor biopsies that correlated with altered expression of genes involved in cell polarity and adhesion. In the paired primary and relapse cohort, we observed a greater degree of genomic change in tumors from patients that were initially sensitive to chemotherapy and had longer progression-free interval compared with tumors from patients that were resistant to primary chemotherapy. Notably, deletion or downregulation of the lipid transporter LRP1B emerged as a significant correlate of acquired resistance in our analysis. Functional studies showed that reducing LRP1B expression was sufficient to reduce the sensitivity of HGSC cell lines to liposomal doxorubicin, but not to doxorubicin, whereas LRP1B overexpression was sufficient to increase sensitivity to liposomal doxorubicin. Together, our findings underscore the large degree of variation in DNA copy number in spatially and temporally separated tumors in HGSC patients, and they define LRP1B as a potential contributor to the emergence of chemotherapy resistance in these patients.