Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    A Bivalent Inhibitor of Prostate Specific Membrane Antigen Radiolabeled with Copper-64 with High Tumor Uptake and Retention
    Zia, NA ; Cullinane, C ; Van Zuylekom, JK ; Waldeck, K ; McInnes, LE ; Buncic, G ; Haskali, MB ; Roselt, PD ; Hicks, RJ ; Donnelly, PS (WILEY-V C H VERLAG GMBH, 2019-10-14)
    Molecules containing lysine-ureido-glutamate functional groups bind to the active site of prostate specific membrane antigen, which is overexpressed in prostate cancer. To prepare copper radiopharmaceuticals for the diagnosis and therapy of prostate cancer, macrobicyclic sarcophagine ligands tethered to either one or two lysine-ureido-glutamate functional groups through an appropriate linker have been prepared. Sarcophagine ligands can be readily radiolabeled with positron-emitting copper-64 at room temperature. The bivalent agent, in which two targeting groups are tethered to a single copper complex, dramatically outperforms the monomeric agent with respect to tumor uptake and retention. The high tumor uptake, low background, and prolonged tumor retention, even at 24 hours post injection, suggest the bivalent agent is a promising diagnostic for prostate cancer and could be used for prospective dosimetry for therapy with a copper-67 variant.
  • Item
    Thumbnail Image
    A Bivalent Inhibitor of Prostate Specific Membrane Antigen Radiolabeled with Copper‐64 with High Tumor Uptake and Retention
    Zia, NA ; Cullinane, C ; Van Zuylekom, JK ; Waldeck, K ; McInnes, LE ; Buncic, G ; Haskali, MB ; Roselt, PD ; Hicks, RJ ; Donnelly, PS (Wiley, 2019-10-14)
    Abstract Molecules containing lysine‐ureido‐glutamate functional groups bind to the active site of prostate specific membrane antigen, which is overexpressed in prostate cancer. To prepare copper radiopharmaceuticals for the diagnosis and therapy of prostate cancer, macrobicyclic sarcophagine ligands tethered to either one or two lysine‐ureido‐glutamate functional groups through an appropriate linker have been prepared. Sarcophagine ligands can be readily radiolabeled with positron‐emitting copper‐64 at room temperature. The bivalent agent, in which two targeting groups are tethered to a single copper complex, dramatically outperforms the monomeric agent with respect to tumor uptake and retention. The high tumor uptake, low background, and prolonged tumor retention, even at 24 hours post injection, suggest the bivalent agent is a promising diagnostic for prostate cancer and could be used for prospective dosimetry for therapy with a copper‐67 variant.
  • Item
    Thumbnail Image
    Enhancing the anti-tumour activity of 177Lu-DOTA-octreotate radionuclide therapy in somatostatin receptor-2 expressing tumour models by targeting PARP
    Cullinane, C ; Waldeck, K ; Kirby, L ; Rogers, BE ; Eu, P ; Tothill, RW ; Hicks, RJ (NATURE PUBLISHING GROUP, 2020-06-23)
    Peptide receptor radionuclide therapy (PRRT) is an important treatment option for patients with somatostatin receptor-2 (SSTR2)-expressing neuroendocrine tumour (NET) though tumour regression occurs in only a minority of patients. Therefore, novel PRRT regimens with improved therapeutic activity are needed. Radiation induced DNA damage repair is an attractive therapeutic target to increase PRRT efficacy and consequently, we have characterised a panel of preclinical models for their SSTR2 expression, in vivo growth properties and response to 177Lu-DOTA-octreotate (LuTate) PRRT to identify models with features suitable for evaluating novel therapeutic combinations. In vitro studies using the SSTR2 expressing AR42J model demonstrate that the combination of LuTate and the small molecule Poly(ADP-ribose) polymerase-1 (PARP) inhibitor, talazoparib led to increased DNA double strand breaks, as assessed by γ-H2AX foci formation, as compared to LuTate alone. Furthermore, using the AR42J tumour model in vivo we demonstrate that the combination of LuTate and talazoparib significantly improved the anti-tumour efficacy of LuTate alone. These findings support the clinical evaluation of the combination of LuTate and PARP inhibition in SSTR2-expressing NET.