Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    Thumbnail Image
    Long term, continuous exposure to panobinostat induces terminal differentiation and long term survival in the TH-MYCN neuroblastoma mouse model
    Waldeck, K ; Cullinane, C ; Ardley, K ; Shortt, J ; Martin, B ; Tothill, RW ; Li, J ; Johnstone, RW ; McArthur, GA ; Hicks, RJ ; Wood, PJ (WILEY, 2016-07-01)
    Neuroblastoma is the most common extra-cranial malignancy in childhood and accounts for ∼15% of childhood cancer deaths. Amplification of MYCN in neuroblastoma is associated with aggressive disease and predicts for poor prognosis. Novel therapeutic approaches are therefore essential to improving patient outcomes in this setting. The histone deacetylases are known to interact with N-Myc and regulate numerous cellular processes via epigenetic modulation, including differentiation. In this study, we used the TH-MYCN mouse model of neuroblastoma to investigate the antitumor activity of the pan-HDAC inhibitor, panobinostat. In particular we sought to explore the impact of long term, continuous panobinostat exposure on the epigenetically driven differentiation process. Continuous treatment of tumor bearing TH-MYCN transgenic mice with panobinostat for nine weeks led to a significant improvement in survival as compared with mice treated with panobinostat for a three-week period. Panobinostat induced rapid tumor regression with no regrowth observed following a nine-week treatment period. Initial tumor response was associated with apoptosis mediated via upregulation of BMF and BIM. The process of terminal differentiation of neuroblastoma into benign ganglioneuroma, with a characteristic increase in S100 expression and reduction of N-Myc expression, occurred following prolonged exposure to the drug. RNA-sequencing analysis of tumors from treated animals confirmed significant upregulation of gene pathways associated with apoptosis and differentiation. Together our data demonstrate the potential of panobinostat as a novel therapeutic strategy for high-risk neuroblastoma patients.
  • Item
    No Preview Available
    New Tris(hydroxypyridinone) Bifunctional Chelators Containing Isothiocyanate Groups Provide a Versatile Platform for Rapid One Step Labeling and PET Imaging with 68Ga3+
    Ma, MT ; Cullinane, C ; Imberti, C ; Baguna Torres, J ; Terry, SYA ; Roselt, P ; Hicks, RJ ; Blower, PJ (AMER CHEMICAL SOC, 2016-02)
    Two new bifunctional tris(hydroxypyridinone) (THP) chelators designed specifically for rapid labeling with (68)Ga have been synthesized, each with pendant isothiocyanate groups and three 1,6-dimethyl-3-hydroxypyridin-4-one groups. Both compounds have been conjugated with the primary amine group of a cyclic integrin targeting peptide, RGD. Each conjugate can be radiolabeled and formulated by treatment with generator-produced (68)Ga(3+) in over 95% radiochemical yield under ambient conditions in less than 5 min, with specific activities of 60-80 MBq nmol(-1). Competitive binding assays and in vivo biodistribution in mice bearing U87MG tumors demonstrate that the new (68)Ga(3+)-labeled THP peptide conjugates retain affinity for the αvβ3 integrin receptor, clear within 1-2 h from circulation, and undergo receptor-mediated tumor uptake in vivo. We conclude that bifunctional THP chelators can be used for simple, efficient labeling of (68)Ga biomolecules under mild conditions suitable for peptides and proteins.
  • Item
    Thumbnail Image
    Rapid kit-based 68Ga-labelling and PET imaging with THP-Tyr3-octreotate: a preliminary comparison with DOTA-Tyr3-octreotate
    Ma, MT ; Cullinane, C ; Waldeck, K ; Roselt, P ; Hicks, RJ ; Blower, PJ (SPRINGEROPEN, 2015-10-09)
    BACKGROUND: Ge/(68)Ga generators provide an inexpensive source of a PET isotope to hospitals without cyclotron facilities. The development of new (68)Ga-based molecular imaging agents and subsequent clinical translation would be greatly facilitated by simplification of radiochemical syntheses. We report the properties of a tris(hydroxypyridinone) conjugate of the SSTR2-targeted peptide, Tyr(3)-octreotate (TATE), and compare the (68)Ga-labelling and biodistribution of [(68)Ga(THP-TATE)] with the clinical radiopharmaceutical [(68)Ga(DOTATATE)]. METHODS: A tris(hydroxypyridinone) with a pendant isothiocyanate group was conjugated to the primary amine terminus of H2N-PEG2-Lys(iv-Dde)(5)-TATE, and the resulting conjugate was deprotected to provide THP-TATE. THP-TATE was radiolabelled with (68)Ga(3+) from a (68)Ge/(68)Ga generator. In vitro uptake was assessed in SSTR2-positive 427-7 cells and SSTR2-negative 427 (parental) cells. Biodistribution of [(68)Ga(THP-TATE)] was compared with that of [(68)Ga(DOTATATE)] in Balb/c nude mice bearing SSTR2-positive AR42J tumours. PET scans were obtained 1 h post-injection, after which animals were euthanised and tissues/organs harvested and counted. RESULTS: [(68)Ga(THP-TATE)] was radiolabelled and formulated rapidly in <2 min, in ≥95 % radiochemical yield at pH 5-6.5 and specific activities of 60-80 MBq nmol(-1) at ambient temperature. [(68)Ga(THP-TATE)] was rapidly internalised into SSTR2-positive cells, but not SSTR2-negative cells, and receptor binding and internalisation were specific. Animals administered [(68)Ga(THP-TATE)] demonstrated comparable SSTR2-positive tumour activity (11.5 ± 0.6 %ID g(-1)) compared to animals administered [(68)Ga(DOTATATE)] (14.4 ± 0.8 %ID g(-1)). Co-administration of unconjugated Tyr(3)-octreotate effectively blocked tumour accumulation of [(68)Ga(THP-TATE)] (2.7 ± 0.6 %ID g(-1)). Blood clearance of [(68)Ga(THP-TATE)] was rapid and excretion was predominantly renal, although compared to [(68)Ga(DOTATATE)], [(68)Ga(THP-TATE)] exhibited comparatively longer kidney retention. CONCLUSIONS: Radiochemical synthesis of [(68)Ga(THP-TATE)] is significantly faster, proceeds under milder conditions, and requires less manipulation than that of [(68)Ga(DOTATATE)]. A (68)Ga-labelled tris(hydroxypyridinone) conjugate of Tyr(3)-octreotate demonstrates specificity and targeting affinity for SSTR2 receptors, with comparable in vivo targeting affinity to the clinical PET tracer, [(68)Ga(DOTATATE)]. Thus, peptide conjugates based on tris(hydroxypyridinones) are conducive to translation to kit-based preparation of PET tracers, enabling the expansion and adoption of (68)Ga PET in hospitals and imaging centres without the need for costly automated synthesis modules.
  • Item
    Thumbnail Image
    Applying advanced imaging techniques to a murine model of orthotopic osteosarcoma
    Broadhead, ML ; Lokmic, Z ; Tan, ML ; Stevenson, A ; Binns, DS ; Cullinane, C ; Hicks, RJ ; Choong, PFM ; Myers, DE (FRONTIERS MEDIA SA, 2015)
    INTRODUCTION: Reliable animal models are required to evaluate novel treatments for osteosarcoma. In this study, the aim was to implement advanced imaging techniques in a murine model of orthotopic osteosarcoma to improve disease modeling and the assessment of primary and metastatic disease. MATERIALS AND METHODS: Intra-tibial injection of luciferase-tagged OPGR80 murine osteosarcoma cells was performed in Balb/c nude mice. Treatment agent [pigment epithelium-derived factor (PEDF)] was delivered to the peritoneal cavity. Primary tumors and metastases were evaluated by in vivo bioluminescent assays, micro-computed tomography, [(18)F]-Fluoride-PET and [(18)F]-FDG-PET. RESULTS: [(18)F]-Fluoride-PET was more sensitive than [(18)F]-FDG-PET for detecting early disease. Both [(18)F]-Fluoride-PET and [(18)F]-FDG-PET showed progressive disease in the model, with fourfold and twofold increases in standardized uptake value (p < 0.05) by the study endpoint, respectively. In vivo bioluminescent assay showed that systemically delivered PEDF inhibited growth of primary osteosarcoma. DISCUSSION: Application of [(18)F]-Fluoride-PET and [(18)F]-FDG-PET to an established murine model of orthotopic osteosarcoma has improved the assessment of disease. The use of targeted imaging should prove beneficial for the evaluation of new approaches to osteosarcoma therapy.
  • Item
    Thumbnail Image
    Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes
    Tiffen, JC ; Gunatilake, D ; Gallagher, SJ ; Gowrishankar, K ; Heinemann, A ; Cullinane, C ; Dutton-Regester, K ; Pupo, GM ; Strbenac, D ; Yang, JY ; Madore, J ; Mann, GJ ; Hayward, NK ; McArthur, GA ; Filipp, FV ; Hersey, P (IMPACT JOURNALS LLC, 2015-09-29)
    The epigenetic modifier EZH2 is part of the polycomb repressive complex that suppresses gene expression via histone methylation. Activating mutations in EZH2 are found in a subset of melanoma that contributes to disease progression by inactivating tumor suppressor genes. In this study we have targeted EZH2 with a specific inhibitor (GSK126) or depleted EZH2 protein by stable shRNA knockdown. We show that inhibition of EZH2 has potent effects on the growth of both wild-type and EZH2 mutant human melanoma in vitro particularly in cell lines harboring the EZH2Y646 activating mutation. This was associated with cell cycle arrest, reduced proliferative capacity in both 2D and 3D culture systems, and induction of apoptosis. The latter was caspase independent and mediated by the release of apoptosis inducing factor (AIFM1) from mitochondria. Gene expression arrays showed that several well characterized tumor suppressor genes were reactivated by EZH2 inhibition. This included activating transcription factor 3 (ATF3) that was validated as an EZH2 target gene by ChIP-qPCR. These results emphasize a critical role for EZH2 in the proliferation and viability of melanoma and highlight the potential for targeted therapy against EZH2 in treatment of patients with melanoma.
  • Item
    Thumbnail Image
    Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling
    Heinemann, A ; Cullinane, C ; De Paoli-Iseppi, R ; Wilmott, JS ; Gunatilake, D ; Madore, J ; Strbenac, D ; Yang, JY ; Gowrishankar, K ; Tiffen, JC ; Prinjha, RK ; Smithers, N ; McArthur, GA ; Hersey, P ; Gallagher, SJ (IMPACT JOURNALS LLC, 2015-08-28)
    Histone acetylation marks have an important role in controlling gene expression and are removed by histone deacetylases (HDACs). These marks are read by bromodomain and extra-terminal (BET) proteins and novel inhibitiors of these proteins are currently in clinical development. Inhibitors of HDAC and BET proteins have individually been shown to cause apoptosis and reduce growth of melanoma cells. Here we show that combining the HDAC inhibitor LBH589 and BET inhibitor I-BET151 synergistically induce apoptosis of melanoma cells but not of melanocytes. Induction of apoptosis proceeded through the mitochondrial pathway, was caspase dependent and involved upregulation of the BH3 pro-apoptotic protein BIM. Analysis of signal pathways in melanoma cell lines resistant to BRAF inhibitors revealed that treatment with the combination strongly downregulated anti-apoptotic proteins and proteins in the AKT and Hippo/YAP signaling pathways. Xenograft studies showed that the combination of inhibitors was more effective than single drug treatment and confirmed upregulation of BIM and downregulation of XIAP as seen in vitro. These results support the combination of these two classes of epigenetic regulators in treatment of melanoma including those resistant to BRAF inhibitors.
  • Item
    No Preview Available
    Resistance to CDK2 Inhibitors Is Associated with Selection of Polyploid Cells in CCNE1-Amplified Ovarian Cancer
    Etemadmoghadam, D ; Au-Yeung, G ; Wall, M ; Mitchell, C ; Kansara, M ; Loehrer, E ; Batzios, C ; George, J ; Ftouni, S ; Weir, BA ; Carter, S ; Gresshoff, I ; Mileshkin, L ; Rischin, D ; Hahn, WC ; Waring, PM ; Getz, G ; Cullinane, C ; Campbell, LJ ; Bowtell, DD (AMER ASSOC CANCER RESEARCH, 2013-11-01)
    PURPOSE: Amplification of cyclin E1 (CCNE1) is associated with poor outcome in breast, lung, and other solid cancers, and is the most prominent structural variant associated with primary treatment failure in high-grade serous ovarian cancer (HGSC). We have previously shown that CCNE1-amplified tumors show amplicon-dependent sensitivity to CCNE1 suppression. Here, we explore targeting CDK2 as a novel therapeutic strategy in CCNE1-amplified cancers and mechanisms of resistance. EXPERIMENTAL DESIGN: We examined the effect of CDK2 suppression using RNA interference and small-molecule inhibitors in SK-OV-3, OVCAR-4, and OVCAR-3 ovarian cancer cell lines. To identify mechanisms of resistance, we derived multiple, independent resistant sublines of OVCAR-3 to CDK2 inhibitors. Resistant cells were extensively characterized by gene expression and copy number analysis, fluorescence-activated cell sorting profiling and conventional karyotyping. In addition, we explored the relationship between CCNE1 amplification and polyploidy using data from primary tumors. RESULTS: We validate CDK2 as a therapeutic target in CCNE1-amplified cells by showing selective sensitivity to suppression, either by gene knockdown or using small-molecule inhibitors. In addition, we identified two resistance mechanisms, one involving upregulation of CDK2 and another novel mechanism involving selection of polyploid cells from the pretreatment tumor population. Our analysis of genomic data shows that polyploidy is a feature of cancer genomes with CCNE1 amplification. CONCLUSIONS: These findings suggest that cyclinE1/CDK2 is an important therapeutic target in HGSC, but that resistance to CDK2 inhibitors may emerge due to upregulation of CDK2 target protein and through preexisting cellular polyploidy.
  • Item
    No Preview Available
    Ubiquitous expression of the Pik3caH1047R mutation promotes hypoglycemia, hypoinsulinemia, and organomegaly
    Kinross, KM ; Montgomery, KG ; Mangiafico, SP ; Hare, LM ; Kleinschmidt, M ; Bywater, MJ ; Poulton, IJ ; Vrahnas, C ; Henneicke, H ; Malaterre, J ; Waring, PM ; Cullinane, C ; Sims, NA ; McArthur, GA ; Andrikopoulos, S ; Phillips, WA (FEDERATION AMER SOC EXP BIOL, 2015-04)
    Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of PI3K, are among the most common mutations found in human cancer and have also recently been implicated in a range of overgrowth syndromes in humans. We have used a novel inducible "exon-switch" approach to knock in the constitutively active Pik3ca(H1047R) mutation into the endogenous Pik3ca gene of the mouse. Ubiquitous expression of the Pik3ca(H1047R) mutation throughout the body resulted in a dramatic increase in body weight within 3 weeks of induction (mutant 150 ± 5%; wild-type 117 ± 3%, mean ± sem), which was associated with increased organ size rather than adiposity. Severe metabolic effects, including a reduction in blood glucose levels to 59 ± 4% of baseline (11 days postinduction) and undetectable insulin levels, were also observed. Pik3ca(H1047R) mutant mice died earlier (median survival 46.5 d post-mutation induction) than wild-type control mice (100% survival > 250 days). Although deletion of Akt2 increased median survival by 44%, neither organ overgrowth, nor hypoglycemia were rescued, indicating that both the growth and metabolic functions of constitutive PI3K activity can be Akt2 independent. This mouse model demonstrates the critical role of PI3K in the regulation of both organ size and glucose metabolism at the whole animal level.
  • Item
    Thumbnail Image
    Intramuscular Transplantation Improves Engraftment Rates for Esophageal Patient-Derived Tumor Xenografts
    Read, M ; Liu, D ; Duong, CP ; Cullinane, C ; Murray, WK ; Fennell, CM ; Shortt, J ; Westerman, D ; Burton, P ; Clemons, NJ ; Phillips, WA (SPRINGER, 2016-01)
    BACKGROUND: Recently, there has been an increase in the availability of targeted molecular therapies for cancer treatment. The application of these approaches to esophageal cancer, however, has been hampered by the relative lack of appropriate models for preclinical testing. Patient-derived tumor xenograft (PDTX) models are gaining popularity for studying many cancers. Unfortunately, it has proven difficult to generate xenografts from esophageal cancer using these models. The purpose of this study was to improve the engraftment efficiency of esophageal PDTXs. METHODS: Fresh pieces of esophageal tumors obtained from endoscopic biopsies or resected specimens were collected from 23 patients. The tumors were then coated in Matrigel and transplanted in immunocompromised mice subcutaneously (n = 6) and/or using a novel implantation technique whereby the tumor is placed in a dorsal intramuscular pocket (n = 18). They are then monitored for engraftment. RESULTS: With the novel intramuscular technique, successful engraftment was achieved for all 18 patient tumors. Among these PDTXs, 13 recapitulated the original patient tumors with respect to degree of differentiation, molecular and genetic profiles, and chemotherapeutic response. Lymphomatous transformation was observed in the other five PDTXs. Successful engraftment was achieved for only one of six patient tumors using the classic subcutaneous approach. DISCUSSION: We achieved a much higher engraftment rate of PDTXs using our novel intramuscular transplant technique than has been reported in other published studies. It is hoped that this advancement will help expedite the development and testing of new therapies for esophageal cancer.
  • Item
    Thumbnail Image
    APR-246 potently inhibits tumour growth and overcomes chemoresistance in preclinical models of oesophageal adenocarcinoma
    Liu, DSH ; Read, M ; Cullinane, C ; Azar, WJ ; Fennell, CM ; Montgomery, KG ; Haupt, S ; Haupt, Y ; Wiman, KG ; Duong, CP ; Clemons, NJ ; Phillips, WA (BMJ PUBLISHING GROUP, 2015-10)
    OBJECTIVES: p53 is a critical tumour suppressor and is mutated in 70% of oesophageal adenocarcinomas (OACs), resulting in chemoresistance and poor survival. APR-246 is a first-in-class reactivator of mutant p53 and is currently in clinical trials. In this study, we characterised the activity of APR-246 and its effect on p53 signalling in a large panel of cell line xenograft (CLX) and patient-derived xenograft (PDX) models of OAC. DESIGN: In vitro response to APR-246 was assessed using clonogenic survival, cell cycle and apoptosis assays. Ectopic expression, gene knockdown and CRISPR/Cas9-mediated knockout studies of mutant p53 were performed to investigate p53-dependent drug effects. p53 signalling was examined using quantitative RT-PCR and western blot. Synergistic interactions between APR-246 and conventional chemotherapies were evaluated in vitro and in vivo using CLX and PDX models. RESULTS: APR-246 upregulated p53 target genes, inhibited clonogenic survival and induced cell cycle arrest as well as apoptosis in OAC cells harbouring p53 mutations. Sensitivity to APR-246 correlated with cellular levels of mutant p53 protein. Ectopic expression of mutant p53 sensitised p53-null cells to APR-246, while p53 gene knockdown and knockout diminished drug activity. Importantly, APR-246 synergistically enhanced the inhibitory effects of cisplatin and 5-fluorouracil through p53 accumulation. Finally, APR-246 demonstrated potent antitumour activity in CLX and PDX models, and restored chemosensitivity to a cisplatin/5-fluorouracil-resistant xenograft model. CONCLUSIONS: APR-246 has significant antitumour activity in OAC. Given that APR-246 is safe at therapeutic levels our study strongly suggests that APR-246 can be translated into improving the clinical outcomes for OAC patients.