Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Alpelisib Monotherapy for PI3K-Altered Pretreated Advanced Breast Cancer A Phase II Study
    Savas, P ; Lo, LL ; Luen, SJ ; Blackley, EF ; Callahan, J ; Moodie, K ; van Geelen, CT ; Ko, Y-A ; Weng, C-F ; Wein, L ; Silva, MJ ; Bujak, AZ ; Yeung, MM ; Ftouni, S ; Hicks, RJ ; Francis, PA ; Lee, CK ; Dawson, S-J ; Loi, S (AMER ASSOC CANCER RESEARCH, 2022-09)
    UNLABELLED: There is limited knowledge on the benefit of the α-subunit-specific PI3K inhibitor alpelisib in later lines of therapy for advanced estrogen receptor-positive (ER+) HER2- and triple-negative breast cancer (TNBC). We conducted a phase II multicohort study of alpelisib monotherapy in patients with advanced PI3K pathway mutant ER+HER2- and TNBC. In the intention-to-treat ER+ cohort, the overall response rate was 30% and the clinical benefit rate was 36%. A decline in PI3K pathway mutant circulating tumor DNA (ctDNA) levels from baseline to week 8 while on therapy was significantly associated with a partial response, clinical benefit, and improved progression-free-survival [HR 0.24; 95% confidence interval (CI), 0.083-0.67, P = 0.0065]. Detection of ESR1 mutations at baseline in plasma was also associated with clinical benefit and improved progression-free survival (HR 0.22; 95% CI, 0.078-0.60, P = 0.003). SIGNIFICANCE: Alpelisib monotherapy displayed efficacy in heavily pretreated ER+ breast cancer with PIK3CA mutations. PIK3CA mutation dynamics in plasma during treatment and ESR1 mutations detected in plasma at baseline were candidate biomarkers predictive of benefit from alpelisib, highlighting the utility of ctDNA assays in this setting. This article is highlighted in the In This Issue feature, p. 2007.
  • Item
    Thumbnail Image
    Clinical implications of prospective genomic profiling of metastatic breast cancer patients (vol 22, 91, 2020)
    van Geelen, CT ; Savas, P ; Teo, ZL ; Luen, SJ ; Weng, C-F ; Ko, Y-A ; Kuykhoven, KS ; Caramia, F ; Salgado, R ; Francis, PA ; Dawson, S-J ; Fox, SB ; Fellowes, A ; Loi, S (BMC, 2022-07-15)
  • Item
    Thumbnail Image
    The Subclonal Architecture of Metastatic Breast Cancer: Results from a Prospective Community-Based Rapid Autopsy Program "CASCADE"
    Savas, P ; Teo, ZL ; Lefevre, C ; Flensburg, C ; Caramia, F ; Alsop, K ; Mansour, M ; Francis, PA ; Thorne, HA ; Silva, MJ ; Kanu, N ; Dietzen, M ; Rowan, A ; Kschischo, M ; Fox, S ; Bowtell, DD ; Dawson, S-J ; Speed, TP ; Swanton, C ; Loi, S ; Ladanyi, M (PUBLIC LIBRARY SCIENCE, 2016-12)
    BACKGROUND: Understanding the cancer genome is seen as a key step in improving outcomes for cancer patients. Genomic assays are emerging as a possible avenue to personalised medicine in breast cancer. However, evolution of the cancer genome during the natural history of breast cancer is largely unknown, as is the profile of disease at death. We sought to study in detail these aspects of advanced breast cancers that have resulted in lethal disease. METHODS AND FINDINGS: Three patients with oestrogen-receptor (ER)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer and one patient with triple negative breast cancer underwent rapid autopsy as part of an institutional prospective community-based rapid autopsy program (CASCADE). Cases represented a range of management problems in breast cancer, including late relapse after early stage disease, de novo metastatic disease, discordant disease response, and disease refractory to treatment. Between 5 and 12 metastatic sites were collected at autopsy together with available primary tumours and longitudinal metastatic biopsies taken during life. Samples underwent paired tumour-normal whole exome sequencing and single nucleotide polymorphism (SNP) arrays. Subclonal architectures were inferred by jointly analysing all samples from each patient. Mutations were validated using high depth amplicon sequencing. Between cases, there were significant differences in mutational burden, driver mutations, mutational processes, and copy number variation. Within each case, we found dramatic heterogeneity in subclonal structure from primary to metastatic disease and between metastatic sites, such that no single lesion captured the breadth of disease. Metastatic cross-seeding was found in each case, and treatment drove subclonal diversification. Subclones displayed parallel evolution of treatment resistance in some cases and apparent augmentation of key oncogenic drivers as an alternative resistance mechanism. We also observed the role of mutational processes in subclonal evolution. Limitations of this study include the potential for bias introduced by joint analysis of formalin-fixed archival specimens with fresh specimens and the difficulties in resolving subclones with whole exome sequencing. Other alterations that could define subclones such as structural variants or epigenetic modifications were not assessed. CONCLUSIONS: This study highlights various mechanisms that shape the genome of metastatic breast cancer and the value of studying advanced disease in detail. Treatment drives significant genomic heterogeneity in breast cancers which has implications for disease monitoring and treatment selection in the personalised medicine paradigm.
  • Item
    Thumbnail Image
    Clinical implications of prospective genomic profiling of metastatic breast cancer patients
    van Geelen, CT ; Savas, P ; Teo, ZL ; Luen, SJ ; Weng, C-F ; Ko, Y-A ; Kuykhoven, KS ; Caramia, F ; Salgado, R ; Francis, PA ; Dawson, S-J ; Fox, SB ; Fellowes, A ; Loi, S (BMC, 2020-08-18)
    BACKGROUND: Metastatic breast cancer remains incurable. Next-generation sequencing (NGS) offers the ability to identify actionable genomic alterations in tumours which may then be matched with targeted therapies, but the implementation and utility of this approach is not well defined for patients with metastatic breast cancer. METHODS: We recruited patients with advanced breast cancer of any subtype for prospective targeted NGS of their most recent tumour samples, using a panel of 108 breast cancer-specific genes. Genes were classified as actionable or non-actionable using the European Society of Medical Oncology Scale for Clinical Actionability of Molecular Targets (ESCAT) guidelines. RESULTS: Between February 2014 and May 2019, 322 patients were enrolled onto the study, with 72% (n = 234) of patients successfully sequenced (n = 357 samples). The majority (74%, n = 171) of sequenced patients were found to carry a potentially actionable alteration, the most common being a PIK3CA mutation. Forty-three percent (n = 74) of patients with actionable alterations were referred for a clinical trial or referred for confirmatory germline testing or had a change in therapy outside of clinical trials. We found alterations in AKT1, BRCA2, CHEK2, ESR1, FGFR1, KMT2C, NCOR1, PIK3CA and TSC2 to be significantly enriched in our metastatic population compared with primary breast cancers. Concordance between primary and metastatic samples for key driver genes (TP53, ERBB2 amplification) was > 75%. Additionally, we found that patients with a higher number of mutations had a significantly worse overall survival. CONCLUSION: Genomic profiling of patients with metastatic breast cancer can have clinical implications and should be considered in all suitable patients.