Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    No Preview Available
    TSTEM-like CAR-T cells exhibit improved persistence and tumor control compared with conventional CAR-T cells in preclinical models
    Meyran, D ; Zhu, JJ ; Butler, J ; Tantalo, D ; MacDonald, S ; Nguyen, TN ; Wang, M ; Thio, N ; D'Souza, C ; Qin, VM ; Slaney, C ; Harrison, A ; Sek, K ; Petrone, P ; Thia, K ; Giuffrida, L ; Scott, AM ; Terry, RL ; Tran, B ; Desai, J ; Prince, HM ; Harrison, SJ ; Beavis, PA ; Kershaw, MH ; Solomon, B ; Ekert, PG ; Trapani, JA ; Darcy, PK ; Neeson, PJ (AMER ASSOC ADVANCEMENT SCIENCE, 2023-04-05)
    Patients who receive chimeric antigen receptor (CAR)-T cells that are enriched in memory T cells exhibit better disease control as a result of increased expansion and persistence of the CAR-T cells. Human memory T cells include stem-like CD8+ memory T cell progenitors that can become either functional stem-like T (TSTEM) cells or dysfunctional T progenitor exhausted (TPEX) cells. To that end, we demonstrated that TSTEM cells were less abundant in infused CAR-T cell products in a phase 1 clinical trial testing Lewis Y-CAR-T cells (NCT03851146), and the infused CAR-T cells displayed poor persistence in patients. To address this issue, we developed a production protocol to generate TSTEM-like CAR-T cells enriched for expression of genes in cell replication pathways. Compared with conventional CAR-T cells, TSTEM-like CAR-T cells had enhanced proliferative capacity and increased cytokine secretion after CAR stimulation, including after chronic CAR stimulation in vitro. These responses were dependent on the presence of CD4+ T cells during TSTEM-like CAR-T cell production. Adoptive transfer of TSTEM-like CAR-T cells induced better control of established tumors and resistance to tumor rechallenge in preclinical models. These more favorable outcomes were associated with increased persistence of TSTEM-like CAR-T cells and an increased memory T cell pool. Last, TSTEM-like CAR-T cells and anti-programmed cell death protein 1 (PD-1) treatment eradicated established tumors, and this was associated with increased tumor-infiltrating CD8+CAR+ T cells producing interferon-γ. In conclusion, our CAR-T cell protocol generated TSTEM-like CAR-T cells with enhanced therapeutic efficacy, resulting in increased proliferative capacity and persistence in vivo.
  • Item
    Thumbnail Image
    Phase I, Open-Label, Dose-Escalation/Dose-Expansion Study of Lifirafenib (BGB-283), an RAF Family Kinase Inhibitor, in Patients With Solid Tumors
    Desai, J ; Gan, H ; Barrow, C ; Jameson, M ; Atkinson, V ; Haydon, A ; Millward, M ; Begbie, S ; Brown, M ; Markman, B ; Patterson, W ; Hill, A ; Horvath, L ; Nagrial, A ; Richardson, G ; Jackson, C ; Friedlander, M ; Parente, P ; Tran, B ; Wang, L ; Chen, Y ; Tang, Z ; Huang, W ; Wu, J ; Zeng, D ; Luo, L ; Solomon, B (AMER SOC CLINICAL ONCOLOGY, 2020-07-01)
    PURPOSE: Lifirafenib is an investigational, reversible inhibitor of B-RAFV600E, wild-type A-RAF, B-RAF, C-RAF, and EGFR. This first-in-human, phase I, dose-escalation/dose-expansion study evaluated the safety, tolerability, and efficacy of lifirafenib in patients with B-RAF- or K-RAS/N-RAS-mutated solid tumors. METHODS: During dose escalation, adult patients with histologically/cytologically confirmed advanced solid tumors received escalating doses of lifirafenib. Primary end points were safety/tolerability during dose escalation and objective response rate in preselected patients with B-RAF and K-RAS/N-RAS mutations during dose expansion. RESULTS: The maximum tolerated dose was established as 40 mg/d; dose-limiting toxicities included reversible thrombocytopenia and nonhematologic toxicity. Across the entire study, the most common grade ≥ 3 treatment-emergent adverse events were hypertension (n = 23; 17.6%) and fatigue (n = 13; 9.9%). One patient with B-RAF-mutated melanoma achieved complete response, and 8 patients with B-RAF mutations had confirmed objective responses: B-RAFV600E/K melanoma (n = 5, including 1 patient treated with prior B-RAF/MEK inhibitor therapy), B-RAFV600E thyroid cancer/papillary thyroid cancer (PTC; n = 2), and B-RAFV600E low-grade serous ovarian cancer (LGSOC; n = 1). One patient with B-RAF-mutated non-small-cell lung cancer (NSCLC) had unconfirmed partial response (PR). Patients with K-RAS-mutated endometrial cancer and K-RAS codon 12-mutated NSCLC had confirmed PR (n = 1 each). No responses were seen in patients with K-RAS/N-RAS-mutated colorectal cancer (n = 20). CONCLUSION: Lifirafenib is a novel inhibitor of key RAF family kinases and EGFR, with an acceptable risk-benefit profile and antitumor activity in patients with B-RAFV600-mutated solid tumors, including melanoma, PTC, and LGSOC, as well as K-RAS-mutated NSCLC and endometrial carcinoma. Future comparisons with first-generation B-RAF inhibitors and exploration of lifirafenib alone or as combination therapy in patients with selected RAS mutations who are resistant/refractory to first-generation B-RAF inhibitors are warranted.