Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 43
  • Item
    Thumbnail Image
    Distress and unmet needs during treatment and quality of life in early cancer survivorship: A longitudinal study of haematological cancer patients
    Oberoi, DV ; White, VM ; Seymour, JF ; Prince, HM ; Harrison, S ; Jefford, M ; Winship, I ; Hill, DJ ; Bolton, D ; Millar, J ; Doo, NW ; Kay, A ; Giles, G (WILEY, 2017-11)
    OBJECTIVE: To examine the influence of anxiety, depression and unmet supportive care needs on future quality of life (QoL) in multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL) patients. METHODS: Multiple myeloma and DLBCL patients recruited through the population-based Victorian Cancer Registry. Data were collected through two telephone interviews: (T1) on average 7 months postdiagnosis, (T2) average 8 months later. QoL was examined at T2 using the Functional Assessment of Cancer Therapy (FACT-G) scale. The Hospital Anxiety and Depression Scale measured anxiety and depression, and the Supportive Care Needs Survey measured unmet needs at T1. Multivariate linear regression examined associations between QoL subscales (physical, emotional, social and functional well-being and overall QoL) and T1 anxiety, depression and unmet needs. RESULTS: Except physical well-being, all other QoL subscales and overall QoL were significantly associated with T1 anxiety. All QoL subscales and overall QoL were significantly associated with T1 depression. Only patient care needs were associated with physical and social well-being and overall QoL. CONCLUSION: Anxiety, depression and patient care unmet needs during treatment are associated with diminished physical and emotional well-being in the following months. Psychological distress and unmet supportive care needs experienced during treatment should be addressed to maximise future QoL.
  • Item
    Thumbnail Image
    Trends in the surgical management of stage 1 renal cell carcinoma: findings from a population-based study
    White, V ; Marco, DJT ; Bolton, D ; Davis, ID ; Jefford, M ; Hill, D ; Prince, HM ; Millar, JL ; Winship, IM ; Coory, M ; Giles, GG (WILEY, 2017-11)
    OBJECTIVES: To determine whether the use of nephron-sparing surgery (NSS) for treatment of stage 1 renal cell carcinoma (RCC) changed between 2009 and the end of 2013 in Australia. PATIENTS AND METHODS: All adult cases of RCC diagnosed in 2009, 2012 and 2013 were identified through the population-based Victorian Cancer Registry. For each identified patient, trained data-abstractors attended treating hospitals or clinician rooms to extract tumour and treatment data through medical record review. Multivariable logistic regression analyses were carried out to examine the significance of change in use of NSS over time, after adjusting for potential confounders. RESULTS: A total of 1 836 patients with RCC were identified. Of these, the proportion of cases with stage 1 tumours was 64% in 2009, 66% in 2012 and 69% in 2013. For T1a tumours, the proportion of patients residing in metropolitan areas receiving NSS increased from 43% in 2009 to 58% in 2012 (P < 0.05), and 69% in 2013 (P < 0.05). For patients residing in non-metropolitan areas, the proportion receiving NSS increased from 27% in 2009 to 49% in 2012, and 61% in 2013 (P < 0.01). Univariable logistic regression showed patients with moderate (odds ratio [OR] 0.57, 95% confidence interval [CI] 0.35-0.94) or severe comorbidities (OR 0.58, 95% CI 0.33-0.99), residing in non-metropolitan areas (OR 0.65, 95% CI 0.47-0.90), were less likely to be treated by NSS, while those attending high-volume hospitals (≥30 cases/year: OR 1.79, 95% CI 1.21-2.65) and those with higher socio-economic status (OR 1.45, 95% CI 1.02-2.07) were more likely to be treated by NSS. In multivariable analyses, patients with T1a tumours in 2012 (OR 2.00, 95% CI 1.34-2.97) and 2013 (OR 3.15, 95% CI 2.13-4.68) were more likely to be treated by NSS than those in 2009. For T1b tumours, use of NSS increased from 8% in 2009 to 20% in 2013 (P < 0.05). CONCLUSION: This population-based study of the management of T1 renal tumours in Australia found that the use of NSS increased over the period 2009 to 2013. Between 2009 and 2013 clinical practice for the treatment of small renal tumours in Australia has increasingly conformed to international guidelines.
  • Item
    Thumbnail Image
    Benign breast disease increases breast cancer risk independent of underlying familial risk profile: Findings from a Prospective Family Study Cohort
    Zeinomar, N ; Phillips, K-A ; Daly, MB ; Milne, RL ; Dite, GS ; MacInnis, RJ ; Liao, Y ; Kehm, RD ; Knight, JA ; Southey, MC ; Chung, WK ; Giles, GG ; McLachlan, S-A ; Friedlander, ML ; Weideman, PC ; Glendon, G ; Nesci, S ; Andrulis, IL ; Buys, SS ; John, EM ; Hopper, JL ; Terry, MB (WILEY, 2019-07-15)
    Benign breast disease (BBD) is an established breast cancer (BC) risk factor, but it is unclear whether the magnitude of the association applies to women at familial or genetic risk. This information is needed to improve BC risk assessment in clinical settings. Using the Prospective Family Study Cohort, we used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of BBD with BC risk. We also examined whether the association with BBD differed by underlying familial risk profile (FRP), calculated using absolute risk estimates from the Breast Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) model. During 176,756 person-years of follow-up (median: 10.9 years, maximum: 23.7) of 17,154 women unaffected with BC at baseline, we observed 968 incident cases of BC. A total of 4,704 (27%) women reported a history of BBD diagnosis at baseline. A history of BBD was associated with a greater risk of BC: HR = 1.31 (95% CI: 1.14-1.50), and did not differ by underlying FRP, with HRs of 1.35 (95% CI: 1.11-1.65), 1.26 (95% CI: 1.00-1.60), and 1.40 (95% CI: 1.01-1.93), for categories of full-lifetime BOADICEA score <20%, 20 to <35%, ≥35%, respectively. There was no difference in the association for women with BRCA1 mutations (HR: 1.64; 95% CI: 1.04-2.58), women with BRCA2 mutations (HR: 1.34; 95% CI: 0.78-2.3) or for women without a known BRCA1 or BRCA2 mutation (HR: 1.31; 95% CI: 1.13-1.53) (pinteraction  = 0.95). Women with a history of BBD have an increased risk of BC that is independent of, and multiplies, their underlying familial and genetic risk.
  • Item
    Thumbnail Image
    rs495139 in the TYMS-ENOSF1 Region and Risk of Ovarian Carcinoma of Mucinous Histology
    Kelemen, LE ; Earp, M ; Fridley, BL ; Chenevix-Trench, G ; Fasching, PA ; Beckmann, MW ; Ekici, AB ; Hein, A ; Lambrechts, D ; Lambrechts, S ; Van Nieuwenhuysen, E ; Vergote, I ; Rossing, MA ; Doherty, JA ; Chang-Claude, J ; Behrens, S ; Moysich, KB ; Cannioto, R ; Lele, S ; Odunsi, K ; Goodman, MT ; Shvetsov, YB ; Thompson, PJ ; Wilkens, LR ; Doerk, T ; Antonenkova, N ; Bogdanova, N ; Hillemanns, P ; Runnebaum, IB ; du Bois, A ; Harter, P ; Heitz, F ; Schwaab, I ; Butzow, R ; Pelttari, LM ; Nevanlinna, H ; Modugno, F ; Edwards, RP ; Kelley, JL ; Ness, RB ; Karlan, BY ; Lester, J ; Orsulic, S ; Walsh, C ; Kjaer, SK ; Jensen, A ; Cunningham, JM ; Vierkant, RA ; Giles, GG ; Bruinsma, F ; Southey, MC ; Hildebrandt, MAT ; Liang, D ; Lu, K ; Wu, X ; Sellers, TA ; Levine, DA ; Schildkraut, JM ; Iversen, ES ; Terry, KL ; Cramer, DW ; Tworoger, SS ; Poole, EM ; Bandera, EV ; Olson, SH ; Orlow, I ; Thomsen, LCV ; Bjorge, L ; Krakstad, C ; Tangen, IL ; Kiemeney, LA ; Aben, KKH ; Massuger, LFAG ; van Altena, AM ; Pejovic, T ; Bean, Y ; Kellar, M ; Cook, LS ; Le, ND ; Brooks-Wilson, A ; Gronwald, J ; Cybulski, C ; Jakubowska, A ; Lubinski, J ; Wentzensen, N ; Brinton, LA ; Lissowska, J ; Hogdall, E ; Engelholm, SA ; Hogdall, C ; Lundvall, L ; Nedergaard, L ; Pharoah, PDP ; Dicks, E ; Song, H ; Tyrer, JP ; McNeish, I ; Siddiqui, N ; Carty, K ; Glasspool, R ; Paul, J ; Campbell, IG ; Eccles, D ; Whittemore, AS ; McGuire, V ; Rothstein, JH ; Sieh, W ; Narod, SA ; Phelan, CM ; McLaughlin, JR ; Risch, HA ; Anton-Culver, H ; Ziogas, A ; Menon, U ; Gayther, SA ; Gentry-Maharaj, A ; Ramus, SJ ; Wu, AH ; Pearce, CL ; Lee, AW ; Pike, MC ; Kupryjanczyk, J ; Podgorska, A ; Plisiecka-Halasa, J ; Sawicki, W ; Goode, EL ; Berchuck, A (MDPI, 2018-09)
    Thymidylate synthase (TYMS) is a crucial enzyme for DNA synthesis. TYMS expression is regulated by its antisense mRNA, ENOSF1. Disrupted regulation may promote uncontrolled DNA synthesis and tumor growth. We sought to replicate our previously reported association between rs495139 in the TYMS-ENOSF1 3' gene region and increased risk of mucinous ovarian carcinoma (MOC) in an independent sample. Genotypes from 24,351 controls to 15,000 women with invasive OC, including 665 MOC, were available. We estimated per-allele odds ratios (OR) and 95% confidence intervals (CI) using unconditional logistic regression, and meta-analysis when combining these data with our previous report. The association between rs495139 and MOC was not significant in the independent sample (OR = 1.09; 95% CI = 0.97⁻1.22; p = 0.15; N = 665 cases). Meta-analysis suggested a weak association (OR = 1.13; 95% CI = 1.03⁻1.24; p = 0.01; N = 1019 cases). No significant association with risk of other OC histologic types was observed (p = 0.05 for tumor heterogeneity). In expression quantitative trait locus (eQTL) analysis, the rs495139 allele was positively associated with ENOSF1 mRNA expression in normal tissues of the gastrointestinal system, particularly esophageal mucosa (r = 0.51, p = 1.7 × 10-28), and nonsignificantly in five MOC tumors. The association results, along with inconclusive tumor eQTL findings, suggest that a true effect of rs495139 might be small.
  • Item
    Thumbnail Image
    Body mass index and breast cancer survival: a Mendelian randomization analysis
    Guo, Q ; Burgess, S ; Turman, C ; Bolla, MK ; Wang, Q ; Lush, M ; Abraham, J ; Aittomaki, K ; Andrulis, IL ; Apicella, C ; Arndt, V ; Barrdahl, M ; Benitez, J ; Berg, CD ; Blomqvist, C ; Bojesen, SE ; Bonanni, B ; Brand, JS ; Brenner, H ; Broeks, A ; Burwinkel, B ; Caldas, C ; Campa, D ; Canzian, F ; Chang-Claude, J ; Chanock, SJ ; Chin, S-F ; Couch, FJ ; Cox, A ; Cross, SS ; Cybulski, C ; Czene, K ; Darabi, H ; Devilee, P ; Diver, WR ; Dunning, AM ; Earl, HM ; Eccles, DM ; Ekici, AB ; Eriksson, M ; Evans, DG ; Fasching, PA ; Figueroa, J ; Flesch-Janys, D ; Flyger, H ; Gapstur, SM ; Gaudet, MM ; Giles, GG ; Glendon, G ; Grip, M ; Gronwald, J ; Haeberle, L ; Haiman, CA ; Hall, P ; Hamann, U ; Hankinson, S ; Hartikainen, JM ; Hein, A ; Hiller, L ; Hogervorst, FB ; Holleczek, B ; Hooning, MJ ; Hoover, RN ; Humphreys, K ; Hunter, DJ ; Husing, A ; Jakubowska, A ; Jukkola-Vuorinen, A ; Kaaks, R ; Kabisch, M ; Kataja, V ; Knight, JA ; Koppert, LB ; Kosma, V-M ; Kristensen, VN ; Lambrechts, D ; Le Marchand, L ; Li, J ; Lindblom, A ; Lindstrom, S ; Lissowska, J ; Lubinski, J ; Machiela, MJ ; Mannermaa, A ; Manoukian, S ; Margolin, S ; Marme, F ; Martens, JWM ; McLean, C ; Menendez, P ; Milne, RL ; Mulligan, AM ; Muranen, TA ; Nevanlinna, H ; Neven, P ; Nielsen, SF ; Nordestgaard, BG ; Olson, JE ; Perez, JIA ; Peterlongo, P ; Phillips, K-A ; Poole, CJ ; Pylkas, K ; Radice, P ; Rahman, N ; Rudiger, T ; Rudolph, A ; Sawyer, EJ ; Schumacher, F ; Seibold, P ; Seynaeve, C ; Shah, M ; Smeets, A ; Southey, MC ; Tollenaar, RAEM ; Tomlinson, I ; Tsimiklis, H ; Ulmer, H-U ; Vachon, C ; van den Ouweland, AMW ; Van't Veer, LJ ; Wildiers, H ; Willett, W ; Winqvist, R ; Zamora, MP ; Chenevix-Trench, G ; Dork, T ; Easton, DF ; Garcia-Closas, M ; Kraft, P ; Hopper, JL ; Zheng, W ; Schmidt, MK ; Pharoah, PDP (OXFORD UNIV PRESS, 2017-12)
    BACKGROUND: There is increasing evidence that elevated body mass index (BMI) is associated with reduced survival for women with breast cancer. However, the underlying reasons remain unclear. We conducted a Mendelian randomization analysis to investigate a possible causal role of BMI in survival from breast cancer. METHODS: We used individual-level data from six large breast cancer case-cohorts including a total of 36 210 individuals (2475 events) of European ancestry. We created a BMI genetic risk score (GRS) based on genotypes at 94 known BMI-associated genetic variants. Association between the BMI genetic score and breast cancer survival was analysed by Cox regression for each study separately. Study-specific hazard ratios were pooled using fixed-effect meta-analysis. RESULTS: BMI genetic score was found to be associated with reduced breast cancer-specific survival for estrogen receptor (ER)-positive cases [hazard ratio (HR) = 1.11, per one-unit increment of GRS, 95% confidence interval (CI) 1.01-1.22, P = 0.03). We observed no association for ER-negative cases (HR = 1.00, per one-unit increment of GRS, 95% CI 0.89-1.13, P = 0.95). CONCLUSIONS: Our findings suggest a causal effect of increased BMI on reduced breast cancer survival for ER-positive breast cancer. There is no evidence of a causal effect of higher BMI on survival for ER-negative breast cancer cases.
  • Item
    No Preview Available
    Identification of six new susceptibility loci for invasive epithelial ovarian cancer
    Kuchenbaecker, KB ; Ramus, SJ ; Tyrer, J ; Lee, A ; Shen, HC ; Beesley, J ; Lawrenson, K ; McGuffog, L ; Healey, S ; Lee, JM ; Spindler, TJ ; Lin, YG ; Pejovic, T ; Bean, Y ; Li, Q ; Coetzee, S ; Hazelett, D ; Miron, A ; Southey, M ; Terry, MB ; Goldgar, DE ; Buys, SS ; Janavicius, R ; Dorfling, CM ; van Rensburg, EJ ; Neuhausen, SL ; Ding, YC ; Hansen, TVO ; Jonson, L ; Gerdes, A-M ; Ejlertsen, B ; Barrowdale, D ; Dennis, J ; Benitez, J ; Osorio, A ; Garcia, MJ ; Komenaka, I ; Weitzel, JN ; Ganschow, P ; Peterlongo, P ; Bernard, L ; Viel, A ; Bonanni, B ; Peissel, B ; Manoukian, S ; Radice, P ; Papi, L ; Ottini, L ; Fostira, F ; Konstantopoulou, I ; Garber, J ; Frost, D ; Perkins, J ; Platte, R ; Ellis, S ; Godwin, AK ; Schmutzler, RK ; Meindl, A ; Engel, C ; Sutter, C ; Sinilnikova, OM ; Damiola, F ; Mazoyer, S ; Stoppa-Lyonnet, D ; Claes, K ; De Leeneer, K ; Kirk, J ; Rodriguez, GC ; Piedmonte, M ; O'Malley, DM ; de la Hoya, M ; Caldes, T ; Aittomaeki, K ; Nevanlinna, H ; Collee, JM ; Rookus, MA ; Oosterwijk, JC ; Tihomirova, L ; Tung, N ; Hamann, U ; Isaccs, C ; Tischkowitz, M ; Imyanitov, EN ; Caligo, MA ; Campbell, IG ; Hogervorst, FBL ; Olah, E ; Diez, O ; Blanco, I ; Brunet, J ; Lazaroso, C ; Angel Pujana, M ; Jakubowska, A ; Gronwald, J ; Lubinski, J ; Sukiennicki, G ; Barkardottir, RB ; Plante, M ; Simard, J ; Soucy, P ; Montagna, M ; Tognazzo, S ; Teixeira, MR ; Pankratz, VS ; Wang, X ; Lindor, N ; Szabo, CI ; Kauff, N ; Vijai, J ; Aghajanian, CA ; Pfeiler, G ; Berger, A ; Singer, CF ; Tea, M-K ; Phelan, CM ; Greene, MH ; Mai, PL ; Rennert, G ; Mulligan, AM ; Tchatchou, S ; Andrulis, IL ; Glendon, G ; Toland, AE ; Jensen, UB ; Kruse, TA ; Thomassen, M ; Bojesen, A ; Zidan, J ; Friedman, E ; Laitman, Y ; Soller, M ; Liljegren, A ; Arver, B ; Einbeigi, Z ; Stenmark-Askmalm, M ; Olopade, OI ; Nussbaum, RL ; Rebbeck, TR ; Nathanson, KL ; Domchek, SM ; Lu, KH ; Karlan, BY ; Walsh, C ; Lester, J ; Hein, A ; Ekici, AB ; Beckmann, MW ; Fasching, PA ; Lambrechts, D ; Van Nieuwenhuysen, E ; Vergote, I ; Lambrechts, S ; Dicks, E ; Doherty, JA ; Wicklund, KG ; Rossing, MA ; Rudolph, A ; Chang-Claude, J ; Wang-Gohrke, S ; Eilber, U ; Moysich, KB ; Odunsi, K ; Sucheston, L ; Lele, S ; Wilkens, LR ; Goodman, MT ; Thompson, PJ ; Shvetsov, YB ; Runnebaum, IB ; Duerst, M ; Hillemanns, P ; Doerk, T ; Antonenkova, N ; Bogdanova, N ; Leminen, A ; Pelttari, LM ; Butzow, R ; Modugno, F ; Kelley, JL ; Edwards, RP ; Ness, RB ; du Bois, A ; Heitz, F ; Schwaab, I ; Harter, P ; Matsuo, K ; Hosono, S ; Orsulic, S ; Jensen, A ; Kjaer, SK ; Hogdall, E ; Hasmad, HN ; Azmi, MAN ; Teo, S-H ; Woo, Y-L ; Fridley, BL ; Goode, EL ; Cunningham, JM ; Vierkant, RA ; Bruinsma, F ; Giles, GG ; Liang, D ; Hildebrandt, MAT ; Wu, X ; Levine, DA ; Bisogna, M ; Berchuck, A ; Iversen, ES ; Schildkraut, JM ; Concannon, P ; Weber, RP ; Cramer, DW ; Terry, KL ; Poole, EM ; Tworoger, SS ; Bandera, EV ; Orlow, I ; Olson, SH ; Krakstad, C ; Salvesen, HB ; Tangen, IL ; Bjorge, L ; van Altena, AM ; Aben, KKH ; Kiemeney, LA ; Massuger, LFAG ; Kellar, M ; Brooks-Wilson, A ; Kelemen, LE ; Cook, LS ; Le, ND ; Cybulski, C ; Yang, H ; Lissowska, J ; Brinton, LA ; Wentzensen, N ; Hogdall, C ; Lundvall, L ; Nedergaard, L ; Baker, H ; Song, H ; Eccles, D ; McNeish, I ; Paul, J ; Carty, K ; Siddiqui, N ; Glasspool, R ; Whittemore, AS ; Rothstein, JH ; McGuire, V ; Sieh, W ; Ji, B-T ; Zheng, W ; Shu, X-O ; Gao, Y-T ; Rosen, B ; Risch, HA ; McLaughlin, JR ; Narod, SA ; Monteiro, AN ; Chen, A ; Lin, H-Y ; Permuth-Wey, J ; Sellers, TA ; Tsai, Y-Y ; Chen, Z ; Ziogas, A ; Anton-Culver, H ; Gentry-Maharaj, A ; Menon, U ; Harrington, P ; Lee, AW ; Wu, AH ; Pearce, CL ; Coetzee, G ; Pike, MC ; Dansonka-Mieszkowska, A ; Timorek, A ; Rzepecka, IK ; Kupryjanczyk, J ; Freedman, M ; Noushmehr, H ; Easton, DF ; Offit, K ; Couch, FJ ; Gayther, S ; Pharoah, PP ; Antoniou, AC ; Chenevix-Trench, G (NATURE PORTFOLIO, 2015-02)
    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.
  • Item
    No Preview Available
    GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer
    Pharoah, PDP ; Tsai, Y-Y ; Ramus, SJ ; Phelan, CM ; Goode, EL ; Lawrenson, K ; Buckley, M ; Fridley, BL ; Tyrer, JP ; Shen, H ; Weber, R ; Karevan, R ; Larson, MC ; Song, H ; Tessier, DC ; Bacot, F ; Vincent, D ; Cunningham, JM ; Dennis, J ; Dicks, E ; Aben, KK ; Anton-Culver, H ; Antonenkova, N ; Armasu, SM ; Baglietto, L ; Bandera, EV ; Beckmann, MW ; Birrer, MJ ; Bloom, G ; Bogdanova, N ; Brenton, JD ; Brinton, LA ; Brooks-Wilson, A ; Brown, R ; Butzow, R ; Campbell, I ; Carney, ME ; Carvalho, RS ; Chang-Claude, J ; Chen, YA ; Chen, Z ; Chow, W-H ; Cicek, MS ; Coetzee, G ; Cook, LS ; Cramer, DW ; Cybulski, C ; Dansonka-Mieszkowska, A ; Despierre, E ; Doherty, JA ; Doerk, T ; du Bois, A ; Duerst, M ; Eccles, D ; Edwards, R ; Ekici, AB ; Fasching, PA ; Fenstermacher, D ; Flanagan, J ; Gao, Y-T ; Garcia-Closas, M ; Gentry-Maharaj, A ; Giles, G ; Gjyshi, A ; Gore, M ; Gronwald, J ; Guo, Q ; Halle, MK ; Harter, P ; Hein, A ; Heitz, F ; Hillemanns, P ; Hoatlin, M ; Hogdall, E ; Hogdall, CK ; Hosono, S ; Jakubowska, A ; Jensen, A ; Kalli, KR ; Karlan, BY ; Kelemen, LE ; Kiemeney, LA ; Kjaer, SK ; Konecny, GE ; Krakstad, C ; Kupryjanczyk, J ; Lambrechts, D ; Lambrechts, S ; Le, ND ; Lee, N ; Lee, J ; Leminen, A ; Lim, BK ; Lissowska, J ; Lubinski, J ; Lundvall, L ; Lurie, G ; Massuger, LFAG ; Matsuo, K ; McGuire, V ; McLaughlin, JR ; Menon, U ; Modugno, F ; Moysich, KB ; Nakanishi, T ; Narod, SA ; Ness, RB ; Nevanlinna, H ; Nickels, S ; Noushmehr, H ; Odunsi, K ; Olson, S ; Orlow, I ; Paul, J ; Pejovic, T ; Pelttari, LM ; Permuth-Wey, J ; Pike, MC ; Poole, EM ; Qu, X ; Risch, HA ; Rodriguez-Rodriguez, L ; Rossing, MA ; Rudolph, A ; Runnebaum, I ; Rzepecka, IK ; Salvesen, HB ; Schwaab, I ; Severi, G ; Shen, H ; Shridhar, V ; Shu, X-O ; Sieh, W ; Southey, MC ; Spellman, P ; Tajima, K ; Teo, S-H ; Terry, KL ; Thompson, PJ ; Timorek, A ; Tworoger, SS ; van Altena, AM ; van den Berg, D ; Vergote, I ; Vierkant, RA ; Vitonis, AF ; Wang-Gohrke, S ; Wentzensen, N ; Whittemore, AS ; Wik, E ; Winterhoff, B ; Woo, YL ; Wu, AH ; Yang, HP ; Zheng, W ; Ziogas, A ; Zulkifli, F ; Goodman, MT ; Hall, P ; Easton, DF ; Pearce, CL ; Berchuck, A ; Chenevix-Trench, G ; Iversen, E ; Monteiro, ANA ; Gayther, SA ; Schildkraut, JM ; Sellers, TA (NATURE PUBLISHING GROUP, 2013-04)
    Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. We performed follow-up genotyping in 18,174 individuals with EOC (cases) and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 that were previously found to have associations close to genome-wide significance and identified three loci newly associated with risk: two loci associated with all EOC subtypes at 8q21 (rs11782652, P = 5.5 × 10(-9)) and 10p12 (rs1243180, P = 1.8 × 10(-8)) and another locus specific to the serous subtype at 17q12 (rs757210, P = 8.1 × 10(-10)). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility and implicated CHMP4C in the pathogenesis of ovarian cancer.
  • Item
    No Preview Available
    Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31
    Permuth-Wey, J ; Lawrenson, K ; Shen, HC ; Velkova, A ; Tyrer, JP ; Chen, Z ; Lin, H-Y ; Chen, YA ; Tsai, Y-Y ; Qu, X ; Ramus, SJ ; Karevan, R ; Lee, J ; Lee, N ; Larson, MC ; Aben, KK ; Anton-Culver, H ; Antonenkova, N ; Antoniou, AC ; Armasu, SM ; Bacot, F ; Baglietto, L ; Bandera, EV ; Barnholtz-Sloan, J ; Beckmann, MW ; Birrer, MJ ; Bloom, G ; Bogdanova, N ; Brinton, LA ; Brooks-Wilson, A ; Brown, R ; Butzow, R ; Cai, Q ; Campbell, I ; Chang-Claude, J ; Chanock, S ; Chenevix-Trench, G ; Cheng, JQ ; Cicek, MS ; Coetzee, GA ; Cook, LS ; Couch, FJ ; Cramer, DW ; Cunningham, JM ; Dansonka-Mieszkowska, A ; Despierre, E ; Doherty, JA ; Doerk, T ; du Bois, A ; Duerst, M ; Easton, DF ; Eccles, D ; Edwards, R ; Ekici, AB ; Fasching, PA ; Fenstermacher, DA ; Flanagan, JM ; Garcia-Closas, M ; Gentry-Maharaj, A ; Giles, GG ; Glasspool, RM ; Gonzalez-Bosquet, J ; Goodman, MT ; Gore, M ; Gorski, B ; Gronwald, J ; Hall, P ; Halle, MK ; Harter, P ; Heitz, F ; Hillemanns, P ; Hoatlin, M ; Hogdall, CK ; Hogdall, E ; Hosono, S ; Jakubowska, A ; Jensen, A ; Jim, H ; Kalli, KR ; Karlan, BY ; Kaye, SB ; Kelemen, LE ; Kiemeney, LA ; Kikkawa, F ; Konecny, GE ; Krakstad, C ; Kjaer, SK ; Kupryjanczyk, J ; Lambrechts, D ; Lambrechts, S ; Lancaster, JM ; Le, ND ; Leminen, A ; Levine, DA ; Liang, D ; Lim, BK ; Lin, J ; Lissowska, J ; Lu, KH ; Lubinski, J ; Lurie, G ; Massuger, LFAG ; Matsuo, K ; McGuire, V ; McLaughlin, JR ; Menon, U ; Modugno, F ; Moysich, KB ; Nakanishi, T ; Narod, SA ; Nedergaard, L ; Ness, RB ; Nevanlinna, H ; Nickels, S ; Noushmehr, H ; Odunsi, K ; Olson, SH ; Orlow, I ; Paul, J ; Pearce, CL ; Pejovic, T ; Pelttari, LM ; Pike, MC ; Poole, EM ; Raska, P ; Renner, SP ; Risch, HA ; Rodriguez-Rodriguez, L ; Rossing, MA ; Rudolph, A ; Runnebaum, IB ; Rzepecka, IK ; Salvesen, HB ; Schwaab, I ; Severi, G ; Shridhar, V ; Shu, X-O ; Shvetsov, YB ; Sieh, W ; Song, H ; Southey, MC ; Spiewankiewicz, B ; Stram, D ; Sutphen, R ; Teo, S-H ; Terry, KL ; Tessier, DC ; Thompson, PJ ; Tworoger, SS ; van Altena, AM ; Vergote, I ; Vierkant, RA ; Vincent, D ; Vitonis, AF ; Wang-Gohrke, S ; Weber, RP ; Wentzensen, N ; Whittemore, AS ; Wik, E ; Wilkens, LR ; Winterhoff, B ; Woo, YL ; Wu, AH ; Xiang, Y-B ; Yang, HP ; Zheng, W ; Ziogas, A ; Zulkifli, F ; Phelan, CM ; Iversen, E ; Schildkraut, JM ; Berchuck, A ; Fridley, BL ; Goode, EL ; Pharoah, PDP ; Monteiro, ANA ; Sellers, TA ; Gayther, SA (NATURE RESEARCH, 2013-03)
    Epithelial ovarian cancer (EOC) has a heritable component that remains to be fully characterized. Most identified common susceptibility variants lie in non-protein-coding sequences. We hypothesized that variants in the 3' untranslated region at putative microRNA (miRNA)-binding sites represent functional targets that influence EOC susceptibility. Here, we evaluate the association between 767 miRNA-related single-nucleotide polymorphisms (miRSNPs) and EOC risk in 18,174 EOC cases and 26,134 controls from 43 studies genotyped through the Collaborative Oncological Gene-environment Study. We identify several miRSNPs associated with invasive serous EOC risk (odds ratio=1.12, P=10(-8)) mapping to an inversion polymorphism at 17q21.31. Additional genotyping of non-miRSNPs at 17q21.31 reveals stronger signals outside the inversion (P=10(-10)). Variation at 17q21.31 is associated with neurological diseases, and our collaboration is the first to report an association with EOC susceptibility. An integrated molecular analysis in this region provides evidence for ARHGAP27 and PLEKHM1 as candidate EOC susceptibility genes.
  • Item
    Thumbnail Image
    Morphological predictors of BRCA1 germline mutations in young women with breast cancer
    Southey, MC ; Ramus, SJ ; Dowty, JG ; Smith, LD ; Tesoriero, AA ; Wong, EEM ; Dite, GS ; Jenkins, MA ; Byrnes, GB ; Winship, I ; Phillips, K-A ; Giles, GG ; Hopper, JL (NATURE PUBLISHING GROUP, 2011-03-15)
    BACKGROUND: Knowing a young woman with newly diagnosed breast cancer has a germline BRCA1 mutation informs her clinical management and that of her relatives. We sought an optimal strategy for identifying carriers using family history, breast cancer morphology and hormone receptor status data. METHODS: We studied a population-based sample of 452 Australian women with invasive breast cancer diagnosed before age 40 years for whom we conducted extensive germline mutation testing (29 carried a BRCA1 mutation) and a systematic pathology review, and collected three-generational family history and tumour ER and PR status. Predictors of mutation status were identified using multiple logistic regression. Areas under receiver operator characteristic (ROC) curves were estimated using five-fold stratified cross-validation. RESULTS: The probability of being a BRCA1 mutation carrier increased with number of selected histology features even after adjusting for family history and ER and PR status (P<0.0001). From the most parsimonious multivariate model, the odds ratio for being a carrier were: 9.7 (95% confidence interval: 2.6-47.0) for trabecular growth pattern (P=0.001); 7.8 (2.7-25.7) for mitotic index over 50 mitoses per 10 high-powered field (P=0.0003); and 2.7 (1.3-5.9) for each first-degree relative with breast cancer diagnosed before age 60 years (P=0.01).The area under the ROC curve was 0.87 (0.83-0.90). CONCLUSION: Pathology review, with attention to a few specific morphological features of invasive breast cancers, can identify almost all BRCA1 germline mutation carriers among women with early-onset breast cancer without taking into account family history.
  • Item
    Thumbnail Image
    BCL2 in breast cancer: a favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received
    Dawson, S-J ; Makretsov, N ; Blows, FM ; Driver, KE ; Provenzano, E ; Le Quesne, J ; Baglietto, L ; Severi, G ; Giles, GG ; McLean, CA ; Callagy, G ; Green, AR ; Ellis, I ; Gelmon, K ; Turashvili, G ; Leung, S ; Aparicio, S ; Huntsman, D ; Caldas, C ; Pharoah, P (NATURE PUBLISHING GROUP, 2010-08-24)
    BACKGROUND: Breast cancer is heterogeneous and the existing prognostic classifiers are limited in accuracy, leading to unnecessary treatment of numerous women. B-cell lymphoma 2 (BCL2), an antiapoptotic protein, has been proposed as a prognostic marker, but this effect is considered to relate to oestrogen receptor (ER) status. This study aimed to test the clinical validity of BCL2 as an independent prognostic marker. METHODS: Five studies of 11 212 women with early-stage breast cancer were analysed. Individual patient data included tumour size, grade, lymph node status, endocrine therapy, chemotherapy and mortality. BCL2, ER, progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) levels were determined in all tumours. A Cox model incorporating the time-dependent effects of each variable was used to explore the prognostic significance of BCL2. RESULTS: In univariate analysis, ER, PR and BCL2 positivity was associated with improved survival and HER2 positivity with inferior survival. For ER and PR this effect was time dependent, whereas for BCL2 and HER2 the effect persisted over time. In multivariate analysis, BCL2 positivity retained independent prognostic significance (hazard ratio (HR) 0.76, 95% confidence interval (CI) 0.66-0.88, P<0.001). BCL2 was a powerful prognostic marker in ER- (HR 0.63, 95% CI 0.54-0.74, P<0.001) and ER+ disease (HR 0.56, 95% CI 0.48-0.65, P<0.001), and in HER2- (HR 0.55, 95% CI 0.49-0.61, P<0.001) and HER2+ disease (HR 0.70, 95% CI 0.57-0.85, P<0.001), irrespective of the type of adjuvant therapy received. Addition of BCL2 to the Adjuvant! Online prognostic model, for a subset of cases with a 10-year follow-up, improved the survival prediction (P=0.0039). CONCLUSIONS: BCL2 is an independent indicator of favourable prognosis for all types of early-stage breast cancer. This study establishes the rationale for introduction of BCL2 immunohistochemistry to improve prognostic stratification. Further work is now needed to ascertain the exact way to apply BCL2 testing for risk stratification and to standardise BCL2 immunohistochemistry for this application.