Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 14
  • Item
    No Preview Available
    PRMT5 and CDK4/6 inhibition result in distinctive patterns of alternative splicing in melanoma
    Chan, LH ; Wang, P ; Abuhammad, S ; Lim, LRJ ; Cursons, J ; Sheppard, KE ; Goode, DL ; Palit Deb, S (Public Library of Science (PLoS), 2023-11-02)
    Drugs targeting cyclin-dependent kinases 4 and 6 (CDK4/6) are promising new treatments for melanoma and other solid malignancies. In studies on CDK4/6 inhibitor resistance, protein arginine methyltransferase 5 (PRMT5) regulation of alternative splicing was shown to be an important downstream component of the CDK4/6 pathway. However, the full effects of inhibition of CDK4/6 on splicing events in melanoma and the extent to which they are dependent on PRMT5 has not been established. We performed full-length mRNA sequencing on CHL1 and A375 melanoma cell lines treated with the CDK4/6 inhibitor palbociclib and the PRMT5 inhibitor GSK3326595 and analysed data for differential gene expression and differential pre-mRNA splicing induced by these agents. Changes in gene expression and RNA splicing were more extensive under PRMT5 inhibition than under CDK4/6 inhibition. Although PRMT5 inhibition and CDK4/6 inhibition induced common RNA splicing events and gene expression profiles, the majority of events induced by CDK4/6 inhibition were distinct. Our findings indicate CDK4/6 has the ability to regulate alternative splicing in a manner that is distinct from PRMT5 inhibition, resulting in divergent changes in gene expression under each therapy.
  • Item
    No Preview Available
    The future of patient-derived xenografts in prostate cancer research
    Lawrence, MG ; Taylor, RA ; Cuffe, GB ; Ang, LS ; Clark, AK ; Goode, DL ; Porter, LH ; Le Magnen, C ; Navone, NM ; Schalken, JA ; Wang, Y ; van Weerden, WM ; Corey, E ; Isaacs, JT ; Nelson, PS ; Risbridger, GP (NATURE PORTFOLIO, 2023-06)
    Patient-derived xenografts (PDXs) are generated by engrafting human tumours into mice. Serially transplantable PDXs are used to study tumour biology and test therapeutics, linking the laboratory to the clinic. Although few prostate cancer PDXs are available in large repositories, over 330 prostate cancer PDXs have been established, spanning broad clinical stages, genotypes and phenotypes. Nevertheless, more PDXs are needed to reflect patient diversity, and to study new treatments and emerging mechanisms of resistance. We can maximize the use of PDXs by exchanging models and datasets, and by depositing PDXs into biorepositories, but we must address the impediments to accessing PDXs, such as institutional, ethical and legal agreements. Through collaboration, researchers will gain greater access to PDXs representing diverse features of prostate cancer.
  • Item
    No Preview Available
    Low-dose carboplatin modifies the tumor microenvironment to augment CAR T cell efficacy in human prostate cancer models
    Porter, LH ; Zhu, JJ ; Lister, NL ; Harrison, SG ; Keerthikumar, S ; Goode, DL ; Urban, RQ ; Byrne, DJ ; Azad, A ; Vela, I ; Hofman, MS ; Neeson, PJ ; Darcy, PK ; Trapani, JA ; Taylor, RA ; Risbridger, GP (NATURE PORTFOLIO, 2023-09-02)
    Chimeric antigen receptor (CAR) T cells have transformed the treatment landscape for hematological malignancies. However, CAR T cells are less efficient against solid tumors, largely due to poor infiltration resulting from the immunosuppressive nature of the tumor microenvironment (TME). Here, we assessed the efficacy of Lewis Y antigen (LeY)-specific CAR T cells in patient-derived xenograft (PDX) models of prostate cancer. In vitro, LeY CAR T cells directly killed organoids derived from androgen receptor (AR)-positive or AR-null PDXs. In vivo, although LeY CAR T cells alone did not reduce tumor growth, a single prior dose of carboplatin reduced tumor burden. Carboplatin had a pro-inflammatory effect on the TME that facilitated early and durable CAR T cell infiltration, including an altered cancer-associated fibroblast phenotype, enhanced extracellular matrix degradation and re-oriented M1 macrophage differentiation. In a PDX less sensitive to carboplatin, CAR T cell infiltration was dampened; however, a reduction in tumor burden was still observed with increased T cell activation. These findings indicate that carboplatin improves the efficacy of CAR T cell treatment, with the extent of the response dependent on changes induced within the TME.
  • Item
    No Preview Available
    Spatial analysis with SPIAT and spaSim to characterize and simulate tissue microenvironments
    Feng, Y ; Yang, T ; Zhu, J ; Li, M ; Doyle, M ; Ozcoban, V ; Bass, GTT ; Pizzolla, A ; Cain, L ; Weng, S ; Pasam, A ; Kocovski, N ; Huang, Y-K ; Keam, SPP ; Speed, TPP ; Neeson, PJ ; Pearson, RBB ; Sandhu, S ; Goode, DLL ; Trigos, ASS (NATURE PORTFOLIO, 2023-05-15)
    Spatial proteomics technologies have revealed an underappreciated link between the location of cells in tissue microenvironments and the underlying biology and clinical features, but there is significant lag in the development of downstream analysis methods and benchmarking tools. Here we present SPIAT (spatial image analysis of tissues), a spatial-platform agnostic toolkit with a suite of spatial analysis algorithms, and spaSim (spatial simulator), a simulator of tissue spatial data. SPIAT includes multiple colocalization, neighborhood and spatial heterogeneity metrics to characterize the spatial patterns of cells. Ten spatial metrics of SPIAT are benchmarked using simulated data generated with spaSim. We show how SPIAT can uncover cancer immune subtypes correlated with prognosis in cancer and characterize cell dysfunction in diabetes. Our results suggest SPIAT and spaSim as useful tools for quantifying spatial patterns, identifying and validating correlates of clinical outcomes and supporting method development.
  • Item
    Thumbnail Image
    Tumor immune microenvironment of primary prostate cancer with and without germline mutations in homologous recombination repair genes
    Trigos, AS ; Pasam, A ; Banks, P ; Wallace, R ; Guo, C ; Keam, S ; Thorne, H ; Mitchell, C ; Lade, S ; Clouston, D ; Hakansson, A ; Liu, Y ; Blyth, B ; Murphy, D ; Lawrentschuk, N ; Bolton, D ; Moon, D ; Darcy, P ; Haupt, Y ; Williams, SG ; Castro, E ; Olmos, D ; Goode, D ; Neeson, P ; Sandhu, S (BMJ PUBLISHING GROUP, 2022-06)
    BACKGROUND: Aberrations in homologous recombination repair (HRR) genes are emerging as important biomarkers for personalized treatment in prostate cancer (PCa). HRR deficiency (HRD) could affect the tumor immune microenvironment (TIME), potentially contributing to differential responses to poly ADP-ribose polymerase (PARP) inhibitors and immune checkpoint inhibitors. Spatial distribution of immune cells in a range of cancers identifies novel disease subtypes and is related to prognosis. In this study we aimed to determine the differences in the TIME of PCa with and without germline (g) HRR mutations. METHODS: We performed gene expression analysis, multiplex immunohistochemistry of T and B cells and quantitative spatial analysis of PCa samples from 36 patients with gHRD and 26 patients with sporadic PCa. Samples were archival tumor tissue from radical prostatectomies with the exception of one biopsy. Results were validated in several independent cohorts. RESULTS: Although the composition of the T cell and B cells was similar in the tumor areas of gHRD-mutated and sporadic tumors, the spatial profiles differed between these cohorts. We describe two T-cell spatial profiles across primary PCa, a clustered immune spatial (CIS) profile characterized by dense clusters of CD4+ T cells closely interacting with PD-L1+ cells, and a free immune spatial (FIS) profile of CD8+ cells in close proximity to tumor cells. gHRD tumors had a more T-cell inflamed microenvironment than sporadic tumors. The CIS profile was mainly observed in sporadic tumors, whereas a FIS profile was enriched in gHRD tumors. A FIS profile was associated with lower Gleason scores, smaller tumors and longer time to biochemical recurrence and metastasis. CONCLUSIONS: gHRD-mutated tumors have a distinct immune microenvironment compared with sporadic tumors. Spatial profiling of T-cells provides additional information beyond T-cell density and is associated with time to biochemical recurrence, time to metastasis, tumor size and Gleason scores.
  • Item
    Thumbnail Image
    CD10 and Das1: a biomarker study using immunohistochemistry to subtype gastric intestinal metaplasia
    Koulis, A ; Di Costanzo, N ; Mitchell, C ; Lade, S ; Goode, D ; Busuttil, RA ; Boussioutas, A (BMC, 2022-04-21)
    BACKGROUND: Intestinal metaplasia (IM) is considered a key pivot point in the Correa model of gastric cancer (GC). It is histologically subtyped into the complete and incomplete subtypes, the latter being associated with a greater risk of progression. However, the clinical utility of IM subtyping remains unclear, partially due to the absence of reliable defining biomarkers. METHODS: Based on gene expression data and existing literature, we selected CD10 and Das1 as candidate biomarkers to distinguish complete and incomplete IM glands in tissues from patients without GC (IM-GC) and patients with GC (IM + GC). Immunohistochemical staining of individually subtyped IM glands was scored after blinding by two researchers using tissue belonging to both IM-GC and IM + GC patients. Whole tissue Das1 staining was further assessed using digital image quantification (cellSens Dimension, Olympus). RESULTS: Across both cohorts CD10 stained the IM brush border and was shown to have a high sensitivity (87.5% and 94.9% in IM-GC and IM + GC patients respectively) and specificity (100.0% and 96.7% respectively) with an overall AUROC of 0.944 for complete IM glands. By contrast Das1 stained mainly goblet cells and the apical membrane of epithelial cells, mostly of incomplete IM glands with a low sensitivity (28.6% and 29.3% in IM-GC and IM + GC patients respectively) but high specificity (98.3% and 85.1% respectively) and an overall AUROC of 0.603 for incomplete IM glands. A combined logistic regression model showed a significant increase in AUROC for detecting complete IM glands (0.955 vs 0.970). Whole tissue digital quantification of Das1 staining showed a significant association with incomplete IM compared to complete IM, both in IM-GC and in IM + GC patients (p = 0.016 and p = 0.009 respectively, Mann-Whitney test and unpaired t test used). Additionally, complete IM in IM + GC patients exhibited significantly more Das1 staining than in IM-GC patients (p = 0.019, Mann-Whitney test). CONCLUSIONS: These findings suggest that CD10 is an outstanding biomarker for complete IM and Das1 may be useful as a secondary biomarker for IM glands at greater risk of progression irrespective of IM subtype. Overall, the clinical use of these biomarkers could lead to improved patient stratification and targeted surveillance.
  • Item
    Thumbnail Image
    Adaptive translational reprogramming of metabolism limits the response to targeted therapy in BRAFV600 melanoma
    Smith, LK ; Parmenter, T ; Kleinschmidt, M ; Kusnadi, EP ; Kang, J ; Martin, CA ; Lau, P ; Patel, R ; Lorent, J ; Papadopoli, D ; Trigos, A ; Ward, T ; Rao, AD ; Lelliott, EJ ; Sheppard, KE ; Goode, D ; Hicks, RJ ; Tiganis, T ; Simpson, KJ ; Larsson, O ; Blythe, B ; Cullinane, C ; Wickramasinghe, VO ; Pearson, RB ; McArthur, GA (NATURE PORTFOLIO, 2022-03-01)
    Despite the success of therapies targeting oncogenes in cancer, clinical outcomes are limited by residual disease that ultimately results in relapse. This residual disease is often characterized by non-genetic adaptive resistance, that in melanoma is characterised by altered metabolism. Here, we examine how targeted therapy reprograms metabolism in BRAF-mutant melanoma cells using a genome-wide RNA interference (RNAi) screen and global gene expression profiling. Using this systematic approach we demonstrate post-transcriptional regulation of metabolism following BRAF inhibition, involving selective mRNA transport and translation. As proof of concept we demonstrate the RNA processing kinase U2AF homology motif kinase 1 (UHMK1) associates with mRNAs encoding metabolism proteins and selectively controls their transport and translation during adaptation to BRAF-targeted therapy. UHMK1 inactivation induces cell death by disrupting therapy induced metabolic reprogramming, and importantly, delays resistance to BRAF and MEK combination therapy in multiple in vivo models. We propose selective mRNA processing and translation by UHMK1 constitutes a mechanism of non-genetic resistance to targeted therapy in melanoma by controlling metabolic plasticity induced by therapy.
  • Item
    Thumbnail Image
    The MURAL collection of prostate cancer patient-derived xenografts enables discovery through preclinical models of uro-oncology
    Risbridger, GP ; Clark, AK ; Porter, LH ; Toivanen, R ; Bakshi, A ; Lister, NL ; Pook, D ; Pezaro, CJ ; Sandhu, S ; Keerthikumar, S ; Urban, RQ ; Papargiris, M ; Kraska, J ; Madsen, HB ; Wang, H ; Richards, MG ; Niranjan, B ; O'Dea, S ; Teng, L ; Wheelahan, W ; Li, Z ; Choo, N ; Ouyang, JF ; Thorne, H ; Devereux, L ; Hicks, RJ ; Sengupta, S ; Harewood, L ; Iddawala, M ; Azad, AA ; Goad, J ; Grummet, J ; Kourambas, J ; Kwan, EM ; Moon, D ; Murphy, DG ; Pedersen, J ; Clouston, D ; Norden, S ; Ryan, A ; Furic, L ; Goode, DL ; Frydenberg, M ; Lawrence, MG ; Taylor, RA (NATURE PORTFOLIO, 2021-08-19)
    Preclinical testing is a crucial step in evaluating cancer therapeutics. We aimed to establish a significant resource of patient-derived xenografts (PDXs) of prostate cancer for rapid and systematic evaluation of candidate therapies. The PDX collection comprises 59 tumors collected from 30 patients between 2012-2020, coinciding with availability of abiraterone and enzalutamide. The PDXs represent the clinico-pathological and genomic spectrum of prostate cancer, from treatment-naïve primary tumors to castration-resistant metastases. Inter- and intra-tumor heterogeneity in adenocarcinoma and neuroendocrine phenotypes is evident from bulk and single-cell RNA sequencing data. Organoids can be cultured from PDXs, providing further capabilities for preclinical studies. Using a 1 x 1 x 1 design, we rapidly identify tumors with exceptional responses to combination treatments. To govern the distribution of PDXs, we formed the Melbourne Urological Research Alliance (MURAL). This PDX collection is a substantial resource, expanding the capacity to test and prioritize effective treatments for prospective clinical trials in prostate cancer.
  • Item
    Thumbnail Image
    Mast Cell-Derived SAMD14 Is a Novel Regulator of the Human Prostate Tumor Microenvironment
    Teng, LKH ; Pereira, BA ; Keerthikumar, S ; Huang, C ; Niranjan, B ; Lee, SN ; Richards, M ; Schittenhelm, RB ; Furic, L ; Goode, DL ; Lawrence, MG ; Taylor, RA ; Ellem, SJ ; Risbridger, GP ; Lister, NL (MDPI, 2021-03)
    Mast cells (MCs) are important cellular components of the tumor microenvironment and are significantly associated with poor patient outcomes in prostate cancer and other solid cancers. The promotion of tumor progression partly involves heterotypic interactions between MCs and cancer-associated fibroblasts (CAFs), which combine to potentiate a pro-tumor extracellular matrix and promote epithelial cell invasion and migration. Thus far, the interactions between MCs and CAFs remain poorly understood. To identify molecular changes that may alter resident MC function in the prostate tumor microenvironment, we profiled the transcriptome of human prostate MCs isolated from patient-matched non-tumor and tumor-associated regions of fresh radical prostatectomy tissue. Transcriptomic profiling revealed a distinct gene expression profile of MCs isolated from prostate tumor regions, including the downregulation of SAMD14, a putative tumor suppressor gene. Proteomic profiling revealed that overexpression of SAMD14 in HMC-1 altered the secretion of proteins associated with immune regulation and extracellular matrix processes. To assess MC biological function within a model of the prostate tumor microenvironment, HMC-1-SAMD14+ conditioned media was added to co-cultures of primary prostatic CAFs and prostate epithelium. HMC-1-SAMD14+ secretions were shown to reduce the deposition and alignment of matrix produced by CAFs and suppress pro-tumorigenic prostate epithelial morphology. Overall, our data present the first profile of human MCs derived from prostate cancer patient specimens and identifies MC-derived SAMD14 as an important mediator of MC phenotype and function within the prostate tumor microenvironment.
  • Item
    Thumbnail Image
    A TOOLKIT FOR THE QUANTITATIVE ANALYSIS OF THE SPATIAL DISTRIBUTION OF CELLS OF THE TUMOR IMMUNE MICROENVIRONMENT
    Trigos, A ; Yang, T ; Feng, Y ; Ozcoban, V ; Doyle, M ; Pasam, A ; Kocovski, N ; Pizzolla, A ; Huang, Y-K ; Bass, G ; Keam, S ; Speed, T ; Neeson, P ; Sandhu, S ; Goode, D (BMJ PUBLISHING GROUP, 2020-11)