Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 37
  • Item
    Thumbnail Image
    Reply to the Baader-Meinhof phenomenon in ductal carcinoma in situ of the breast
    Pang, J-MB ; Gorringe, KL ; Fox, SB (WILEY-BLACKWELL, 2016-09)
  • Item
    Thumbnail Image
    Atypical ductal hyperplasia is a multipotent precursor of breast carcinoma
    Kader, T ; Hill, P ; Zethoven, M ; Goode, DL ; Elder, K ; Thio, N ; Doyle, M ; Semple, T ; Sufyan, W ; Byrne, DJ ; Pang, J-MB ; Murugasu, A ; Miligy, IM ; Green, AR ; Rakha, EA ; Fox, SB ; Mann, GB ; Campbell, IG ; Gorringe, KL (WILEY, 2019-07)
  • Item
    Thumbnail Image
    The prognostic significance of lysosomal protective protein (cathepsin A) in breast ductal carcinoma in situ
    Toss, MS ; Miligy, IM ; Haj-Ahmad, R ; Gorringe, KL ; AlKawaz, A ; Mittal, K ; Ellis, IO ; Green, AR ; Rakha, EA (WILEY, 2019-06)
    AIMS: Cathepsin A (CTSA) is a key regulatory enzyme for galactoside metabolism. Additionally, it has a distinct proteolytic activity and plays a role in tumour progression. CTSA is differentially expressed at the mRNA level between breast ductal carcinoma in situ (DCIS) and invasive breast carcinoma (IBC). In this study, we aimed to characterise CTSA protein expression in DCIS and evaluate its prognostic significance. METHODS AND RESULTS: A large cohort of DCIS [n = 776 for pure DCIS and n = 239 for DCIS associated with IBC (DCIS/IBC)] prepared as a tissue microarray was immunohistochemically stained for CTSA. High CTSA expression was observed in 48% of pure DCIS. High expression was associated with features of poor DCIS prognosis, including younger age at diagnosis (<50 years), higher nuclear grade, hormone receptor negativity, HER2 positivity, high proliferative index and high hypoxia inducible factor 1 alpha expression. High CTSA expression was associated with shorter recurrence-free interval (RFI) (P = 0.0001). In multivariate survival analysis for patients treated with breast conserving surgery, CTSA was an independent predictor of shorter RFI (P = 0.015). DCIS associated with IBC showed higher CTSA expression than pure DCIS (P = 0.04). In the DCIS/IBC cohort, CTSA expression was higher in the invasive component than the DCIS component (P < 0.0001). CONCLUSION: CTSA is not only associated with aggressive behaviour and poor outcome in DCIS but also a potential marker to predict co-existing invasion in DCIS.
  • Item
    Thumbnail Image
    Molecular comparison of interval and screen-detected breast cancers
    Cheasley, D ; Li, N ; Rowley, SM ; Elder, K ; Mann, GB ; Loi, S ; Savas, P ; Goode, DL ; Kader, T ; Zethoven, M ; Semple, T ; Fox, SB ; Pang, J-M ; Byrne, D ; Devereux, L ; Nickson, C ; Procopio, P ; Lee, G ; Hughes, S ; Saunders, H ; Fujihara, KM ; Kuykhoven, K ; Connaughton, J ; James, PA ; Gorringe, KL ; Campbell, IG (WILEY, 2019-06)
  • Item
    Thumbnail Image
    Molecular analysis of PALB2-associated breast cancers
    Lee, JEA ; Li, N ; Rowley, SM ; Cheasley, D ; Zethoven, M ; McInerny, S ; Gorringe, KL ; James, PA ; Campbell, IG (WILEY, 2018-05)
  • Item
    Thumbnail Image
    Invasion in breast lesions: the role of the epithelial-stroma barrier
    Rakha, EA ; Miligy, IM ; Gorringe, KL ; Toss, MS ; Green, AR ; Fox, SB ; Schmitt, FC ; Tan, P-H ; Tse, GM ; Badve, S ; Decker, T ; Vincent-Salomon, A ; Dabbs, DJ ; Foschini, MP ; Moreno, F ; Yang, W ; Geyer, FC ; Reis-Filho, JS ; Pinder, SE ; Lakhani, SR ; Ellis, IO (WILEY, 2018-06)
    Despite the significant biological, behavioural and management differences between ductal carcinoma in situ (DCIS) and invasive carcinoma of the breast, they share many morphological and molecular similarities. Differentiation of these two different lesions in breast pathological diagnosis is based typically on the presence of an intact barrier between the malignant epithelial cells and stroma; namely, the myoepithelial cell (MEC) layer and surrounding basement membrane (BM). Despite being robust diagnostic criteria, the identification of MECs and BM to differentiate in-situ from invasive carcinoma is not always straightforward. The MEC layer around DCIS may be interrupted and/or show an altered immunoprofile. MECs may be absent in some benign locally infiltrative lesions such as microglandular adenosis and infiltrating epitheliosis, and occasionally in non-infiltrative conditions such as apocrine lesions, and in these contexts this does not denote malignancy or invasive disease with metastatic potential. MECs may also be absent around some malignant lesions such as some forms of papillary carcinoma, yet these behave in an indolent fashion akin to some DCIS. In Paget's disease, malignant mammary epithelial cells extend anteriorly from the ducts to infiltrate the epidermis of the nipple but do not typically infiltrate through the BM into the dermis. Conversely, BM-like material can be seen around invasive carcinoma cells and around metastatic tumour cell deposits. Here, we review the role of MECs and BM in breast pathology and highlight potential clinical implications. We advise caution in interpretation of MEC features in breast pathology and mindfulness of the substantive evidence base in the literature associated with behaviour and clinical outcome of lesions classified as benign on conventional morphological examination before changing classification to an invasive lesion on the sole basis of MEC characteristics.
  • Item
    Thumbnail Image
    Ductal Carcinoma In Situ Biology, Biomarkers, and Diagnosis
    Gorringe, KL ; Fox, SB (FRONTIERS MEDIA SA, 2017-10-23)
    Ductal carcinoma in situ (DCIS) is an often-diagnosed breast disease and a known, non-obligate, precursor to invasive breast carcinoma. In this review, we explore the clinical and pathological features of DCIS, fundamental elements of DCIS biology including gene expression and genetic events, the relationship of DCIS with recurrence and invasive breast cancer, and the interaction of DCIS with the microenvironment. We also survey how these various elements are being used to solve the clinical conundrum of how to optimally treat a disease that has potential to progress, and yet is also likely over-treated in a significant proportion of cases.
  • Item
    Thumbnail Image
    LRH-1 expression patterns in breast cancer tissues are associated with tumour aggressiveness
    Pang, J-MB ; Molania, R ; Chand, A ; Knower, K ; Takano, EA ; Byrne, DJ ; Mikeska, T ; Millar, EKA ; Lee, CS ; O'Toole, SA ; Clyne, C ; Gorringe, KL ; Dobrovic, A ; Fox, SB (IMPACT JOURNALS LLC, 2017-10-13)
    The significance and regulation of liver receptor homologue 1 (LRH-1, NR5A2), a tumour-promoting transcription factor in breast cancer cell lines, is unknown in clinical breast cancers. This study aims to determine LRH-1/NR5A2 expression in breast cancers and relationship with DNA methylation and tumour characteristics. In The Cancer Genome Atlas breast cancer cohort NR5A2 expression was positively associated with intragenic CpG island methylation (1.4-fold expression for fully methylated versus not fully methylated, p=0.01) and inversely associated with promoter CpG island methylation (0.6-fold expression for fully methylated versus not fully methylated, p=0.036). LRH-1 immunohistochemistry of 329 invasive carcinomas and ductal carcinoma in situ (DCIS) was performed. Densely punctate/coarsely granular nuclear reactivity was significantly associated with high tumour grade (p<0.005, p=0.033 in invasive carcinomas and DCIS respectively), negative estrogen receptor status (p=0.008, p=0.038 in overall cohort and invasive carcinomas, respectively), negative progesterone receptor status (p=0.003, p=0.013 in overall cohort and invasive carcinomas, respectively), HER2 amplification (overall cohort p=0.034) and non-luminal intrinsic subtype (p=0.018, p=0.038 in overall cohort and invasive carcinomas, respectively). These significant associations of LRH-1 protein expression with tumour phenotype suggest that LRH-1 is an important indicator of tumour biology in breast cancers and may be useful in risk stratification.
  • Item
    Thumbnail Image
    Molecular cytogenetic analysis of breast cancer cell lines
    Davidson, JM ; Gorringe, KL ; Chin, SF ; Orsetti, B ; Besret, C ; Courtay-Cahen, C ; Roberts, I ; Theillet, C ; Caldas, C ; Edwards, PAW (CHURCHILL LIVINGSTONE, 2000-11)
    The extensive chromosome rearrangements of breast carcinomas must contribute to tumour development, but have been largely intractable to classical cytogenetic banding. We report here the analysis by 24-colour karyotyping and comparative genomic hybridization (CGH) of 19 breast carcinoma cell lines and one normal breast epithelial cell line, which provide model examples of karyotype patterns and translocations present in breast carcinomas. The CGH was compared with CGH of 106 primary breast cancers. The lines varied from perfectly diploid to highly aneuploid. Translocations were very varied and over 98% were unbalanced. The most frequent in the carcinomas were 8;11 in five lines; and 8;17, 1;4 and 1;10 in four lines. The most frequently involved chromosome was 8. Several lines showed complex multiply-translocated chromosomes. The very aneuploid karyotypes appeared to fall into two groups that evolved by different routes: one that steadily lost chromosomes and at one point doubled their entire karyotype; and another that steadily gained chromosomes, together with abnormalities. All karyotypes fell within the range seen in fresh material and CGH confirmed that the lines were broadly representative of fresh tumours. The karyotypes provide a resource for the cataloguing and analysis of translocations in these tumours, accessible at http://www.path.cam.ac.uk/ approximately pawefish.
  • Item
    No Preview Available
    A rational approach to cancer therapy.
    Gorringe, KL ; Campbell, IG (Springer Science and Business Media LLC, 2008)
    A report on the 20th Annual Lorne Cancer Conference, Lorne, Australia, 14-16 February 2008.