Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 20
  • Item
    Thumbnail Image
    Inotuzumab ozogamicin resistance associated with a novel CD22 truncating mutation in a case of B-acute lymphoblastic leukaemia
    Ryland, GL ; Barraclough, A ; Fong, CY ; Fleming, S ; Bajel, A ; Hofmann, O ; Westerman, D ; Grimmond, S ; Blombery, P (WILEY, 2020-10)
  • Item
    Thumbnail Image
    Identification of the CIMP-like subtype and aberrant methylation of members of the chromosomal segregation and spindle assembly pathways in esophageal adenocarcinoma
    Krause, L ; Nones, K ; Loffler, KA ; Nancarrow, D ; Oey, H ; Tang, YH ; Wayte, NJ ; Patch, AM ; Patel, K ; Brosda, S ; Manning, S ; Lampe, G ; Clouston, A ; Thomas, J ; Stoye, J ; Hussey, DJ ; Watson, DI ; Lord, RV ; Phillips, WA ; Gotley, D ; Smithers, BM ; Whiteman, DC ; Hayward, NK ; Grimmond, SM ; Waddell, N ; Barbour, AP (OXFORD UNIV PRESS, 2016-04)
    The incidence of esophageal adenocarcinoma (EAC) has risen significantly over recent decades. Although survival has improved, cure rates remain poor, with <20% of patients surviving 5 years. This is the first study to explore methylome, transcriptome and ENCODE data to characterize the role of methylation in EAC. We investigate the genome-wide methylation profile of 250 samples including 125 EAC, 19 Barrett's esophagus (BE), 85 squamous esophagus and 21 normal stomach. Transcriptome data of 70 samples (48 EAC, 4 BE and 18 squamous esophagus) were used to identify changes in methylation associated with gene expression. BE and EAC showed similar methylation profiles, which differed from squamous tissue. Hypermethylated sites in EAC and BE were mainly located in CpG-rich promoters. A total of 18575 CpG sites associated with 5538 genes were differentially methylated, 63% of these genes showed significant correlation between methylation and mRNA expression levels. Pathways involved in tumorigenesis including cell adhesion, TGF and WNT signaling showed enrichment for genes aberrantly methylated. Genes involved in chromosomal segregation and spindle formation were aberrantly methylated. Given the recent evidence that chromothripsis may be a driver mechanism in EAC, the role of epigenetic perturbation of these pathways should be further investigated. The methylation profiles revealed two EAC subtypes, one associated with widespread CpG island hypermethylation overlapping H3K27me3 marks and binding sites of the Polycomb proteins. These subtypes were supported by an independent set of 89 esophageal cancer samples. The most hypermethylated tumors showed worse patient survival.
  • Item
    Thumbnail Image
    Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis
    Nones, K ; Waddell, N ; Wayte, N ; Patch, A-M ; Bailey, P ; Newell, F ; Holmes, O ; Fink, JL ; Quinn, MCJ ; Tang, YH ; Lampe, G ; Quek, K ; Loffler, KA ; Manning, S ; Idrisoglu, S ; Miller, D ; Xu, Q ; Waddell, N ; Wilson, PJ ; Bruxner, TJC ; Christ, AN ; Harliwong, I ; Nourse, C ; Nourbakhsh, E ; Anderson, M ; Kazakoff, S ; Leonard, C ; Wood, S ; Simpson, PT ; Reid, LE ; Krause, L ; Hussey, DJ ; Watson, DI ; Lord, RV ; Nancarrow, D ; Phillips, WA ; Gotley, D ; Smithers, BM ; Whiteman, DC ; Hayward, NK ; Campbell, PJ ; Pearson, JV ; Grimmond, SM ; Barbour, AP (NATURE PUBLISHING GROUP, 2014-10)
    Oesophageal adenocarcinoma (EAC) incidence is rapidly increasing in Western countries. A better understanding of EAC underpins efforts to improve early detection and treatment outcomes. While large EAC exome sequencing efforts to date have found recurrent loss-of-function mutations, oncogenic driving events have been underrepresented. Here we use a combination of whole-genome sequencing (WGS) and single-nucleotide polymorphism-array profiling to show that genomic catastrophes are frequent in EAC, with almost a third (32%, n=40/123) undergoing chromothriptic events. WGS of 22 EAC cases show that catastrophes may lead to oncogene amplification through chromothripsis-derived double-minute chromosome formation (MYC and MDM2) or breakage-fusion-bridge (KRAS, MDM2 and RFC3). Telomere shortening is more prominent in EACs bearing localized complex rearrangements. Mutational signature analysis also confirms that extreme genomic instability in EAC can be driven by somatic BRCA2 mutations. These findings suggest that genomic catastrophes have a significant role in the malignant transformation of EAC.
  • Item
    Thumbnail Image
    Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia
    Bell, CC ; Fenne, KA ; Chan, Y-C ; Rambow, F ; Yeung, MM ; Vassiliadis, D ; Lara, L ; Yeh, P ; Martelotto, LG ; Rogiers, A ; Kremer, BE ; Barbash, O ; Mohammad, HP ; Johanson, TM ; Burr, ML ; Dhar, A ; Karpinich, N ; Tian, L ; Tyler, DS ; MacPherson, L ; Shi, J ; Pinnawala, N ; Fong, CY ; Papenfuss, AT ; Grimmond, SM ; Dawson, S-J ; Allan, RS ; Kruger, RG ; Vakoc, CR ; Goode, DL ; Naik, SH ; Gilan, O ; Lam, EYN ; Marine, J-C ; Prinjha, RK ; Dawson, MA (NATURE PORTFOLIO, 2019-06-20)
    Non-genetic drug resistance is increasingly recognised in various cancers. Molecular insights into this process are lacking and it is unknown whether stable non-genetic resistance can be overcome. Using single cell RNA-sequencing of paired drug naïve and resistant AML patient samples and cellular barcoding in a unique mouse model of non-genetic resistance, here we demonstrate that transcriptional plasticity drives stable epigenetic resistance. With a CRISPR-Cas9 screen we identify regulators of enhancer function as important modulators of the resistant cell state. We show that inhibition of Lsd1 (Kdm1a) is able to overcome stable epigenetic resistance by facilitating the binding of the pioneer factor, Pu.1 and cofactor, Irf8, to nucleate new enhancers that regulate the expression of key survival genes. This enhancer switching results in the re-distribution of transcriptional co-activators, including Brd4, and provides the opportunity to disable their activity and overcome epigenetic resistance. Together these findings highlight key principles to help counteract non-genetic drug resistance.
  • Item
    Thumbnail Image
    Genomic footprints of activated telomere maintenance mechanisms in cancer
    Sieverling, L ; Hong, C ; Koser, SD ; Ginsbach, P ; Kleinheinz, K ; Hutter, B ; Braun, DM ; Cortes-Ciriano, I ; Xi, R ; Kabbe, R ; Park, PJ ; Eils, R ; Schlesner, M ; Brors, B ; Rippe, K ; Jones, DTW ; Feuerbach, L (NATURE PORTFOLIO, 2020-02-05)
    Cancers require telomere maintenance mechanisms for unlimited replicative potential. They achieve this through TERT activation or alternative telomere lengthening associated with ATRX or DAXX loss. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we dissect whole-genome sequencing data of over 2500 matched tumor-control samples from 36 different tumor types aggregated within the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium to characterize the genomic footprints of these mechanisms. While the telomere content of tumors with ATRX or DAXX mutations (ATRX/DAXXtrunc) is increased, tumors with TERT modifications show a moderate decrease of telomere content. One quarter of all tumor samples contain somatic integrations of telomeric sequences into non-telomeric DNA. This fraction is increased to 80% prevalence in ATRX/DAXXtrunc tumors, which carry an aberrant telomere variant repeat (TVR) distribution as another genomic marker. The latter feature includes enrichment or depletion of the previously undescribed singleton TVRs TTCGGG and TTTGGG, respectively. Our systematic analysis provides new insight into the recurrent genomic alterations associated with telomere maintenance mechanisms in cancer.
  • Item
    Thumbnail Image
    High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations
    Zhang, Y ; Chen, F ; Fonseca, NA ; He, Y ; Fujita, M ; Nakagawa, H ; Zhang, Z ; Brazma, A ; Creighton, CJ (NATURE PUBLISHING GROUP, 2020-02-05)
    The impact of somatic structural variants (SVs) on gene expression in cancer is largely unknown. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data and RNA sequencing from a common set of 1220 cancer cases, we report hundreds of genes for which the presence within 100 kb of an SV breakpoint associates with altered expression. For the majority of these genes, expression increases rather than decreases with corresponding breakpoint events. Up-regulated cancer-associated genes impacted by this phenomenon include TERT, MDM2, CDK4, ERBB2, CD274, PDCD1LG2, and IGF2. TERT-associated breakpoints involve ~3% of cases, most frequently in liver biliary, melanoma, sarcoma, stomach, and kidney cancers. SVs associated with up-regulation of PD1 and PDL1 genes involve ~1% of non-amplified cases. For many genes, SVs are significantly associated with increased numbers or greater proximity of enhancer regulatory elements near the gene. DNA methylation near the promoter is often increased with nearby SV breakpoint, which may involve inactivation of repressor elements.
  • Item
    Thumbnail Image
    Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing
    Cortes-Ciriano, I ; Lee, JJ-K ; Xi, R ; Jain, D ; Jung, YL ; Yang, L ; Gordenin, D ; Klimczak, LJ ; Zhang, C-Z ; Pellman, DS ; Park, PJ ; Akdemir, KC ; Alvarez, EG ; Baez-Ortega, A ; Beroukhim, R ; Boutros, PC ; Bowtell, DDL ; Brors, B ; Burns, KH ; Campbell, PJ ; Chan, K ; Chen, K ; Dueso-Barroso, A ; Dunford, AJ ; Edwards, PA ; Estivill, X ; Etemadmoghadam, D ; Feuerbach, L ; Fink, JL ; Frenkel-Morgenstern, M ; Garsed, DW ; Gerstein, M ; Gordenin, DA ; Haan, D ; Haber, JE ; Hess, JM ; Hutter, B ; Imielinski, M ; Jones, DTW ; Ju, YS ; Kazanov, MD ; Koh, Y ; Korbel, JO ; Kumar, K ; Lee, EA ; Li, Y ; Lynch, AG ; Macintyre, G ; Markowetz, F ; Martincorena, I ; Martinez-Fundichely, A ; Miyano, S ; Nakagawa, H ; Navarro, FCP ; Ossowski, S ; Pearson, J ; Puiggros, M ; Rippe, K ; Roberts, ND ; Roberts, SA ; Rodriguez-Martin, B ; Schumacher, SE ; Scully, R ; Shackleton, M ; Sidiropoulos, N ; Sieverling, L ; Stewart, C ; Torrents, D ; Tubio, JMC ; Villasante, I ; Waddell, N ; Wala, JA ; Weischenfeldt, J ; Yao, X ; Yoon, S-S ; Zamora, J ; Alsop, K ; Christie, EL ; Fereday, S ; Mileshkin, L ; Mitchell, C ; Thorne, H ; Traficante, N ; Cmero, M ; Cowin, PA ; Hamilton, A ; Mir Arnau, G ; Vedururu, R ; Grimmond, SM ; Hofmann, O ; Morrison, C ; Oien, KA ; Pairojkul, C ; Waring, PM ; van de Vijver, MJ ; Behren, A (Nature Research, 2020-03)
    Chromothripsis is a mutational phenomenon characterized by massive, clustered genomic rearrangements that occurs in cancer and other diseases. Recent studies in selected cancer types have suggested that chromothripsis may be more common than initially inferred from low-resolution copy-number data. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we analyze patterns of chromothripsis across 2,658 tumors from 38 cancer types using whole-genome sequencing data. We find that chromothripsis events are pervasive across cancers, with a frequency of more than 50% in several cancer types. Whereas canonical chromothripsis profiles display oscillations between two copy-number states, a considerable fraction of events involve multiple chromosomes and additional structural alterations. In addition to non-homologous end joining, we detect signatures of replication-associated processes and templated insertions. Chromothripsis contributes to oncogene amplification and to inactivation of genes such as mismatch-repair-related genes. These findings show that chromothripsis is a major process that drives genome evolution in human cancer.
  • Item
    Thumbnail Image
    Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer
    Akdemir, KC ; Le, VT ; Chandran, S ; Li, Y ; Verhaak, RG ; Beroukhim, R ; Campbell, PJ ; Chin, L ; Dixon, JR ; Futreal, PA ; Alvarez, EG ; Baez-Ortega, A ; Beroukhim, R ; Boutros, PC ; Bowtell, DDL ; Brors, B ; Burns, KH ; Chan, K ; Chen, K ; Cortes-Ciriano, I ; Dueso-Barroso, A ; Dunford, AJ ; Edwards, PA ; Estivill, X ; Etemadmoghadam, D ; Feuerbach, L ; Fink, JL ; Frenkel-Morgenstern, M ; Garsed, DW ; Gerstein, M ; Gordenin, DA ; Haan, D ; Haber, JE ; Hess, JM ; Hutter, B ; Imielinski, M ; Jones, DTW ; Ju, YS ; Kazanov, MD ; Klimczak, LJ ; Koh, Y ; Korbel, JO ; Kumar, K ; Lee, EA ; Lee, JJ-K ; Lynch, AG ; Macintyre, G ; Markowetz, F ; Martincorena, I ; Martinez-Fundichely, A ; Meyerson, M ; Miyano, S ; Nakagawa, H ; Navarro, FCP ; Ossowski, S ; Park, PJ ; Pearson, JV ; Puiggros, M ; Rippe, K ; Roberts, ND ; Roberts, SA ; Rodriguez-Martin, B ; Schumacher, SE ; Scully, R ; Shackleton, M ; Sidiropoulos, N ; Sieverling, L ; Stewart, C ; Torrents, D ; Tubio, JMC ; Villasante, I ; Waddell, N ; Wala, JA ; Weischenfeldt, J ; Yang, L ; Yao, X ; Yoon, S-S ; Zamora, J ; Zhang, C-Z (NATURE PORTFOLIO, 2020-03)
    Chromatin is folded into successive layers to organize linear DNA. Genes within the same topologically associating domains (TADs) demonstrate similar expression and histone-modification profiles, and boundaries separating different domains have important roles in reinforcing the stability of these features. Indeed, domain disruptions in human cancers can lead to misregulation of gene expression. However, the frequency of domain disruptions in human cancers remains unclear. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we analyzed 288,457 somatic structural variations (SVs) to understand the distributions and effects of SVs across TADs. Notably, SVs can lead to the fusion of discrete TADs, and complex rearrangements markedly change chromatin folding maps in the cancer genomes. Notably, only 14% of the boundary deletions resulted in a change in expression in nearby genes of more than twofold.
  • Item
    Thumbnail Image
    Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis
    Carlevaro-Fita, J ; Lanzos, A ; Feuerbach, L ; Hong, C ; Mas-Ponte, D ; Pedersen, JS ; Johnson, R ; Abascal, F ; Amin, SB ; Bader, GD ; Barenboim, J ; Beroukhim, R ; Bertl, J ; Boroevich, KA ; Brunak, S ; Campbell, PJ ; Carlevaro-Fita, J ; Chakravarty, D ; Chan, CWY ; Chen, K ; Choi, JK ; Deu-Pons, J ; Dhingra, P ; Diamanti, K ; Feuerbach, L ; Fink, JL ; Fonseca, NA ; Frigola, J ; Gambacorti-Passerini, C ; Garsed, DW ; Gerstein, M ; Getz, G ; Gonzalez-Perez, A ; Guo, Q ; Gut, IG ; Haan, D ; Hamilton, MP ; Haradhvala, NJ ; Harmanci, AO ; Helmy, M ; Herrmann, C ; Hess, JM ; Hobolth, A ; Hodzic, E ; Hong, C ; Hornshoj, H ; Isaev, K ; Izarzugaza, JMG ; Johnson, TA ; Juul, M ; Juul, RI ; Kahles, A ; Kahraman, A ; Kellis, M ; Khurana, E ; Kim, J ; Kim, JK ; Kim, Y ; Komorowski, J ; Korbel, JO ; Kumar, S ; Lanzos, A ; Larsson, E ; Lawrence, MS ; Lee, D ; Lehmann, K-V ; Li, S ; Li, X ; Lin, Z ; Liu, EM ; Lochovsky, L ; Lou, S ; Madsen, T ; Marchal, K ; Martincorena, I ; Martinez-Fundichely, A ; Maruvka, YE ; McGillivray, PD ; Meyerson, W ; Muinos, F ; Mularoni, L ; Nakagawa, H ; Nielsen, MM ; Paczkowska, M ; Park, K ; Park, K ; Pedersen, JS ; Pich, O ; Pons, T ; Pulido-Tamayo, S ; Raphael, BJ ; Reimand, J ; Reyes-Salazar, I ; Reyna, MA ; Rheinbay, E ; Rubin, MA ; Rubio-Perez, C ; Sabarinathan, R ; Sahinalp, SC ; Saksena, G ; Salichos, L ; Sander, C ; Schumacher, SE ; Shackleton, M ; Shapira, O ; Shen, C ; Shrestha, R ; Shuai, S ; Sidiropoulos, N ; Sieverling, L ; Sinnott-Armstrong, N ; Stein, LD ; Stuart, JM ; Tamborero, D ; Tiao, G ; Tsunoda, T ; Umer, HM ; Uuskula-Reimand, L ; Valencia, A ; Vazquez, M ; Verbeke, LPC ; Wadelius, C ; Wadi, L ; Wang, J ; Warrell, J ; Waszak, SM ; Weischenfeldt, J ; Wheeler, DA ; Wu, G ; Yu, J ; Zhang, J ; Zhang, X ; Zhang, Y ; Zhao, Z ; Zou, L ; von Mering, C (NATURE PUBLISHING GROUP, 2020-02-05)
    Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC), a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes. In contrast to existing databases, CLC requires strong functional or genetic evidence. CLC genes are enriched amongst driver genes predicted from somatic mutations, and display characteristic genomic features. Strikingly, CLC genes are enriched for driver mutations from unbiased, genome-wide transposon-mutagenesis screens in mice. We identified 10 tumour-causing mutations in orthologues of 8 lncRNAs, including LINC-PINT and NEAT1, but not MALAT1. Thus CLC represents a dataset of high-confidence cancer lncRNAs. Mutagenesis maps are a novel means for identifying deeply-conserved roles of lncRNAs in tumorigenesis.
  • Item
    Thumbnail Image
    Integrative pathway enrichment analysis of multivariate omics data
    Paczkowska, M ; Barenboim, J ; Sintupisut, N ; Fox, NS ; Zhu, H ; Abd-Rabbo, D ; Mee, MW ; Boutros, PC ; Reimand, J (NATURE PUBLISHING GROUP, 2020-02-05)
    Multi-omics datasets represent distinct aspects of the central dogma of molecular biology. Such high-dimensional molecular profiles pose challenges to data interpretation and hypothesis generation. ActivePathways is an integrative method that discovers significantly enriched pathways across multiple datasets using statistical data fusion, rationalizes contributing evidence and highlights associated genes. As part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we integrated genes with coding and non-coding mutations and revealed frequently mutated pathways and additional cancer genes with infrequent mutations. We also analyzed prognostic molecular pathways by integrating genomic and transcriptomic features of 1780 breast cancers and highlighted associations with immune response and anti-apoptotic signaling. Integration of ChIP-seq and RNA-seq data for master regulators of the Hippo pathway across normal human tissues identified processes of tissue regeneration and stem cell regulation. ActivePathways is a versatile method that improves systems-level understanding of cellular organization in health and disease through integration of multiple molecular datasets and pathway annotations.