Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 22
  • Item
    No Preview Available
    A Matched Molecular and Clinical Analysis of the Epithelioid Haemangioendothelioma Cohort in the Stafford Fox Rare Cancer Program and Contextual Literature Review
    Abdelmogod, A ; Papadopoulos, L ; Riordan, S ; Wong, M ; Weltman, M ; Lim, R ; Mcevoy, C ; Fellowes, A ; Fox, S ; Bedo, J ; Penington, J ; Pham, K ; Hofmann, O ; Vissers, JHA ; Grimmond, S ; Ratnayake, G ; Christie, M ; Mitchell, C ; Murray, WK ; Mcclymont, K ; Luk, P ; Papenfuss, AT ; Kee, D ; Scott, CL ; Goldstein, D ; Barker, HE (MDPI, 2023-09)
    BACKGROUND: Epithelioid haemangioendothelioma (EHE) is an ultra-rare malignant vascular tumour with a prevalence of 1 per 1,000,000. It is typically molecularly characterised by a WWTR1::CAMTA1 gene fusion in approximately 90% of cases, or a YAP1::TFE3 gene fusion in approximately 10% of cases. EHE cases are typically refractory to therapies, and no anticancer agents are reimbursed for EHE in Australia. METHODS: We report a cohort of nine EHE cases with comprehensive histologic and molecular profiling from the Walter and Eliza Hall Institute of Medical Research Stafford Fox Rare Cancer Program (WEHI-SFRCP) collated via nation-wide referral to the Australian Rare Cancer (ARC) Portal. The diagnoses of EHE were confirmed by histopathological and immunohistochemical (IHC) examination. Molecular profiling was performed using the TruSight Oncology 500 assay, the TruSight RNA fusion panel, whole genome sequencing (WGS), or whole exome sequencing (WES). RESULTS: Molecular analysis of RNA, DNA or both was possible in seven of nine cases. The WWTR1::CAMTA1 fusion was identified in five cases. The YAP1::TFE3 fusion was identified in one case, demonstrating unique morphology compared to cases with the more common WWTR1::CAMTA1 fusion. All tumours expressed typical endothelial markers CD31, ERG, and CD34 and were negative for pan-cytokeratin. Cases with a WWTR1::CAMTA1 fusion displayed high expression of CAMTA1 and the single case with a YAP1::TFE3 fusion displayed high expression of TFE3. Survival was highly variable and unrelated to molecular profile. CONCLUSIONS: This cohort of EHE cases provides molecular and histopathological characterisation and matching clinical information that emphasises the molecular patterns and variable clinical outcomes and adds to our knowledge of this ultra-rare cancer. Such information from multiple studies will advance our understanding, potentially improving treatment options.
  • Item
    Thumbnail Image
    Methyl-CpG binding domain 4, DNA glycosylase (MBD4)-associated neoplasia syndrome associated with a homozygous missense variant in MBD4: Expansion of an emerging phenotype
    Blombery, P ; Ryland, GL ; Fox, LC ; Stark, Z ; Wall, M ; Jarmolowicz, A ; Roesley, A ; Thompson, ER ; Grimmond, SM ; Panicker, S ; Kwok, F (WILEY, 2022-07)
  • Item
    No Preview Available
    Enhancer retargeting of CDX2 and UBTF::ATXN7L3 define a subtype of high-risk B-progenitor acute lymphoblastic leukemia
    Kimura, S ; Montefiori, L ; Iacobucci, I ; Zhao, Y ; Gao, Q ; Paietta, EM ; Haferlach, C ; Laird, AD ; Mead, PE ; Gu, Z ; Stock, W ; Litzow, M ; Rowe, JM ; Luger, SM ; Hunger, SP ; Ryland, GL ; Schmidt, B ; Ekert, PG ; Oshlack, A ; Grimmond, SM ; Rehn, J ; Breen, J ; Yeung, D ; White, DL ; Aldoss, I ; Jabbour, EJ ; Pui, C-H ; Meggendorfer, M ; Walter, W ; Kern, W ; Haferlach, T ; Brady, S ; Zhang, J ; Roberts, KG ; Blombery, P ; Mullighan, CG (AMER SOC HEMATOLOGY, 2022-06-16)
    Transcriptome sequencing has identified multiple subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL) of prognostic significance, but a minority of cases lack a known genetic driver. Here, we used integrated whole-genome (WGS) and -transcriptome sequencing (RNA-seq), enhancer mapping, and chromatin topology analysis to identify previously unrecognized genomic drivers in B-ALL. Newly diagnosed (n = 3221) and relapsed (n = 177) B-ALL cases with tumor RNA-seq were studied. WGS was performed to detect mutations, structural variants, and copy number alterations. Integrated analysis of histone 3 lysine 27 acetylation and chromatin looping was performed using HiChIP. We identified a subset of 17 newly diagnosed and 5 relapsed B-ALL cases with a distinct gene expression profile and 2 universal and unique genomic alterations resulting from aberrant recombination-activating gene activation: a focal deletion downstream of PAN3 at 13q12.2 resulting in CDX2 deregulation by the PAN3 enhancer and a focal deletion of exons 18-21 of UBTF at 17q21.31 resulting in a chimeric fusion, UBTF::ATXN7L3. A subset of cases also had rearrangement and increased expression of the PAX5 gene, which is otherwise uncommon in B-ALL. Patients were more commonly female and young adult with median age 35 (range,12-70 years). The immunophenotype was characterized by CD10 negativity and immunoglobulin M positivity. Among 16 patients with known clinical response, 9 (56.3%) had high-risk features including relapse (n = 4) or minimal residual disease >1% at the end of remission induction (n = 5). CDX2-deregulated, UBTF::ATXN7L3 rearranged (CDX2/UBTF) B-ALL is a high-risk subtype of leukemia in young adults for which novel therapeutic approaches are required.
  • Item
    No Preview Available
    Targeting homologous recombination deficiency in uterine leiomyosarcoma
    Dall, G ; Vandenberg, CJJ ; Nesic, K ; Ratnayake, G ; Zhu, W ; Vissers, JHA ; Bedo, J ; Penington, J ; Wakefield, MJJ ; Kee, D ; Carmagnac, A ; Lim, R ; Shield-Artin, K ; Milesi, B ; Lobley, A ; Kyran, ELL ; O'Grady, E ; Tram, J ; Zhou, W ; Nugawela, D ; Stewart, KP ; Caldwell, R ; Papadopoulos, L ; Ng, APP ; Dobrovic, A ; Fox, SBB ; McNally, O ; Power, JDD ; Meniawy, T ; Tan, TH ; Collins, IMM ; Klein, O ; Barnett, S ; Olesen, I ; Hamilton, A ; Hofmann, O ; Grimmond, S ; Papenfuss, ATT ; Scott, CLL ; Barker, HEE (BMC, 2023-05-04)
    BACKGROUND: Uterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy, with individuals with advanced uLMS having a five-year survival of < 10%. Mutations in the homologous recombination (HR) DNA repair pathway have been observed in ~ 10% of uLMS cases, with reports of some individuals benefiting from poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) therapy, which targets this DNA repair defect. In this report, we screened individuals with uLMS, accrued nationally, for mutations in the HR repair pathway and explored new approaches to therapeutic targeting. METHODS: A cohort of 58 individuals with uLMS were screened for HR Deficiency (HRD) using whole genome sequencing (WGS), whole exome sequencing (WES) or NGS panel testing. Individuals identified to have HRD uLMS were offered PARPi therapy and clinical outcome details collected. Patient-derived xenografts (PDX) were generated for therapeutic targeting. RESULTS: All 13 uLMS samples analysed by WGS had a dominant COSMIC mutational signature 3; 11 of these had high genome-wide loss of heterozygosity (LOH) (> 0.2) but only two samples had a CHORD score > 50%, one of which had a homozygous pathogenic alteration in an HR gene (deletion in BRCA2). A further three samples harboured homozygous HRD alterations (all deletions in BRCA2), detected by WES or panel sequencing, with 5/58 (9%) individuals having HRD uLMS. All five individuals gained access to PARPi therapy. Two of three individuals with mature clinical follow up achieved a complete response or durable partial response (PR) with the subsequent addition of platinum to PARPi upon minor progression during initial PR on PARPi. Corresponding PDX responses were most rapid, complete and sustained with the PARP1-specific PARPi, AZD5305, compared with either olaparib alone or olaparib plus cisplatin, even in a paired sample of a BRCA2-deleted PDX, derived following PARPi therapy in the patient, which had developed PARPi-resistance mutations in PRKDC, encoding DNA-PKcs. CONCLUSIONS: Our work demonstrates the value of identifying HRD for therapeutic targeting by PARPi and platinum in individuals with the aggressive rare malignancy, uLMS and suggests that individuals with HRD uLMS should be included in trials of PARP1-specific PARPi.
  • Item
    Thumbnail Image
    PRMT5: An Emerging Target for Pancreatic Adenocarcinoma
    Lee, MKC ; Grimmond, SM ; McArthur, GA ; Sheppard, KE (MDPI, 2021-10)
    The overall survival of pancreatic ductal adenocarcinoma (PDAC) remains poor and its incidence is rising. Targetable mutations in PDAC are rare, thus novel therapeutic approaches are needed. Protein arginine methyltransferase 5 (PRMT5) overexpression is associated with worse survival and inhibition of PRMT5 results in decreased cancer growth across multiple cancers, including PDAC. Emerging evidence also suggests that altered RNA processing is a driver in PDAC tumorigenesis and creates a partial dependency on this process. PRMT5 inhibition induces altered splicing and this vulnerability can be exploited as a novel therapeutic approach. Three possible biological pathways underpinning the action of PRMT5 inhibitors are discussed; c-Myc regulation appears central to its action in the PDAC setting. Whilst homozygous MTAP deletion and symmetrical dimethylation levels are associated with increased sensitivity to PRMT5 inhibition, neither measure robustly predicts its growth inhibitory response. The immunomodulatory effect of PRMT5 inhibitors on the tumour microenvironment will also be discussed, based on emerging evidence that PDAC stroma has a significant bearing on disease behaviour and response to therapy. Lastly, with the above caveats in mind, current knowledge gaps and the implications and rationales for PRMT5 inhibitor development in PDAC will be explored.
  • Item
    Thumbnail Image
    Inotuzumab ozogamicin resistance associated with a novel CD22 truncating mutation in a case of B-acute lymphoblastic leukaemia
    Ryland, GL ; Barraclough, A ; Fong, CY ; Fleming, S ; Bajel, A ; Hofmann, O ; Westerman, D ; Grimmond, S ; Blombery, P (WILEY, 2020-10)
  • Item
    Thumbnail Image
    Genomic footprints of activated telomere maintenance mechanisms in cancer
    Sieverling, L ; Hong, C ; Koser, SD ; Ginsbach, P ; Kleinheinz, K ; Hutter, B ; Braun, DM ; Cortes-Ciriano, I ; Xi, R ; Kabbe, R ; Park, PJ ; Eils, R ; Schlesner, M ; Brors, B ; Rippe, K ; Jones, DTW ; Feuerbach, L (NATURE PORTFOLIO, 2020-02-05)
    Cancers require telomere maintenance mechanisms for unlimited replicative potential. They achieve this through TERT activation or alternative telomere lengthening associated with ATRX or DAXX loss. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we dissect whole-genome sequencing data of over 2500 matched tumor-control samples from 36 different tumor types aggregated within the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium to characterize the genomic footprints of these mechanisms. While the telomere content of tumors with ATRX or DAXX mutations (ATRX/DAXXtrunc) is increased, tumors with TERT modifications show a moderate decrease of telomere content. One quarter of all tumor samples contain somatic integrations of telomeric sequences into non-telomeric DNA. This fraction is increased to 80% prevalence in ATRX/DAXXtrunc tumors, which carry an aberrant telomere variant repeat (TVR) distribution as another genomic marker. The latter feature includes enrichment or depletion of the previously undescribed singleton TVRs TTCGGG and TTTGGG, respectively. Our systematic analysis provides new insight into the recurrent genomic alterations associated with telomere maintenance mechanisms in cancer.
  • Item
    Thumbnail Image
    High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations
    Zhang, Y ; Chen, F ; Fonseca, NA ; He, Y ; Fujita, M ; Nakagawa, H ; Zhang, Z ; Brazma, A ; Creighton, CJ (NATURE PUBLISHING GROUP, 2020-02-05)
    The impact of somatic structural variants (SVs) on gene expression in cancer is largely unknown. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data and RNA sequencing from a common set of 1220 cancer cases, we report hundreds of genes for which the presence within 100 kb of an SV breakpoint associates with altered expression. For the majority of these genes, expression increases rather than decreases with corresponding breakpoint events. Up-regulated cancer-associated genes impacted by this phenomenon include TERT, MDM2, CDK4, ERBB2, CD274, PDCD1LG2, and IGF2. TERT-associated breakpoints involve ~3% of cases, most frequently in liver biliary, melanoma, sarcoma, stomach, and kidney cancers. SVs associated with up-regulation of PD1 and PDL1 genes involve ~1% of non-amplified cases. For many genes, SVs are significantly associated with increased numbers or greater proximity of enhancer regulatory elements near the gene. DNA methylation near the promoter is often increased with nearby SV breakpoint, which may involve inactivation of repressor elements.
  • Item
    Thumbnail Image
    Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing
    Cortes-Ciriano, I ; Lee, JJ-K ; Xi, R ; Jain, D ; Jung, YL ; Yang, L ; Gordenin, D ; Klimczak, LJ ; Zhang, C-Z ; Pellman, DS ; Park, PJ ; Akdemir, KC ; Alvarez, EG ; Baez-Ortega, A ; Beroukhim, R ; Boutros, PC ; Bowtell, DDL ; Brors, B ; Burns, KH ; Campbell, PJ ; Chan, K ; Chen, K ; Dueso-Barroso, A ; Dunford, AJ ; Edwards, PA ; Estivill, X ; Etemadmoghadam, D ; Feuerbach, L ; Fink, JL ; Frenkel-Morgenstern, M ; Garsed, DW ; Gerstein, M ; Gordenin, DA ; Haan, D ; Haber, JE ; Hess, JM ; Hutter, B ; Imielinski, M ; Jones, DTW ; Ju, YS ; Kazanov, MD ; Koh, Y ; Korbel, JO ; Kumar, K ; Lee, EA ; Li, Y ; Lynch, AG ; Macintyre, G ; Markowetz, F ; Martincorena, I ; Martinez-Fundichely, A ; Miyano, S ; Nakagawa, H ; Navarro, FCP ; Ossowski, S ; Pearson, J ; Puiggros, M ; Rippe, K ; Roberts, ND ; Roberts, SA ; Rodriguez-Martin, B ; Schumacher, SE ; Scully, R ; Shackleton, M ; Sidiropoulos, N ; Sieverling, L ; Stewart, C ; Torrents, D ; Tubio, JMC ; Villasante, I ; Waddell, N ; Wala, JA ; Weischenfeldt, J ; Yao, X ; Yoon, S-S ; Zamora, J ; Alsop, K ; Christie, EL ; Fereday, S ; Mileshkin, L ; Mitchell, C ; Thorne, H ; Traficante, N ; Cmero, M ; Cowin, PA ; Hamilton, A ; Mir Arnau, G ; Vedururu, R ; Grimmond, SM ; Hofmann, O ; Morrison, C ; Oien, KA ; Pairojkul, C ; Waring, PM ; van de Vijver, MJ ; Behren, A (Nature Research, 2020-03)
    Chromothripsis is a mutational phenomenon characterized by massive, clustered genomic rearrangements that occurs in cancer and other diseases. Recent studies in selected cancer types have suggested that chromothripsis may be more common than initially inferred from low-resolution copy-number data. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we analyze patterns of chromothripsis across 2,658 tumors from 38 cancer types using whole-genome sequencing data. We find that chromothripsis events are pervasive across cancers, with a frequency of more than 50% in several cancer types. Whereas canonical chromothripsis profiles display oscillations between two copy-number states, a considerable fraction of events involve multiple chromosomes and additional structural alterations. In addition to non-homologous end joining, we detect signatures of replication-associated processes and templated insertions. Chromothripsis contributes to oncogene amplification and to inactivation of genes such as mismatch-repair-related genes. These findings show that chromothripsis is a major process that drives genome evolution in human cancer.
  • Item
    Thumbnail Image
    Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer
    Akdemir, KC ; Le, VT ; Chandran, S ; Li, Y ; Verhaak, RG ; Beroukhim, R ; Campbell, PJ ; Chin, L ; Dixon, JR ; Futreal, PA ; Alvarez, EG ; Baez-Ortega, A ; Beroukhim, R ; Boutros, PC ; Bowtell, DDL ; Brors, B ; Burns, KH ; Chan, K ; Chen, K ; Cortes-Ciriano, I ; Dueso-Barroso, A ; Dunford, AJ ; Edwards, PA ; Estivill, X ; Etemadmoghadam, D ; Feuerbach, L ; Fink, JL ; Frenkel-Morgenstern, M ; Garsed, DW ; Gerstein, M ; Gordenin, DA ; Haan, D ; Haber, JE ; Hess, JM ; Hutter, B ; Imielinski, M ; Jones, DTW ; Ju, YS ; Kazanov, MD ; Klimczak, LJ ; Koh, Y ; Korbel, JO ; Kumar, K ; Lee, EA ; Lee, JJ-K ; Lynch, AG ; Macintyre, G ; Markowetz, F ; Martincorena, I ; Martinez-Fundichely, A ; Meyerson, M ; Miyano, S ; Nakagawa, H ; Navarro, FCP ; Ossowski, S ; Park, PJ ; Pearson, JV ; Puiggros, M ; Rippe, K ; Roberts, ND ; Roberts, SA ; Rodriguez-Martin, B ; Schumacher, SE ; Scully, R ; Shackleton, M ; Sidiropoulos, N ; Sieverling, L ; Stewart, C ; Torrents, D ; Tubio, JMC ; Villasante, I ; Waddell, N ; Wala, JA ; Weischenfeldt, J ; Yang, L ; Yao, X ; Yoon, S-S ; Zamora, J ; Zhang, C-Z (NATURE PORTFOLIO, 2020-03)
    Chromatin is folded into successive layers to organize linear DNA. Genes within the same topologically associating domains (TADs) demonstrate similar expression and histone-modification profiles, and boundaries separating different domains have important roles in reinforcing the stability of these features. Indeed, domain disruptions in human cancers can lead to misregulation of gene expression. However, the frequency of domain disruptions in human cancers remains unclear. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we analyzed 288,457 somatic structural variations (SVs) to understand the distributions and effects of SVs across TADs. Notably, SVs can lead to the fusion of discrete TADs, and complex rearrangements markedly change chromatin folding maps in the cancer genomes. Notably, only 14% of the boundary deletions resulted in a change in expression in nearby genes of more than twofold.