Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    No Preview Available
    Development of Highly Potent Clinical Candidates for Theranostic Applications against Cholecystokinin-2 Receptor Positive Cancers
    Corlett, A ; Pinson, J-A ; Rahimi, MN ; Van Zuylekom, J ; Cullinane, C ; Blyth, B ; Thompson, PE ; Hutton, CA ; Roselt, PD ; Haskali, MB (AMER CHEMICAL SOC, 2023-07-26)
    Peptide receptor radionuclide therapy (PRRT) is a promising form of systemic radiation therapy designed to eradicate cancer. Cholecystokinin-2 receptor (CCK2R) is an important molecular target that is highly expressed in a range of cancers. This study describes the synthesis and in vivo characterization of a novel series of 177Lu-labeled peptides ([177Lu]Lu-2b-4b) in comparison with the reference CCK2R-targeting peptide CP04 ([177Lu]Lu-1b). [177Lu]Lu-1b-4b showed high chemical purity (HPLC ≥ 94%), low Log D7.4 (-4.09 to -4.55) with strong binding affinity to CCK2R (KD 0.097-1.61 nM), and relatively high protein binding (55.6-80.2%) and internalization (40-67%). Biodistribution studies of the novel 177Lu-labeled peptides in tumors (AR42J and A431-CCK2R) showed uptake one- to eight-fold greater than the reference compound CP04 at 1, 24, and 48 h. Rapid clearance and high tumor uptake and retention were established for [177Lu]Lu-2b-4b, making these compounds excellent candidates for theranostic applications against CCK2R-expressing tumors.
  • Item
    Thumbnail Image
    Radiolabelled Peptides: Optimal Candidates for Theranostic Application in Oncology
    Hall, AJ ; Haskali, MB (CSIRO PUBLISHING, 2022)
    Theranostics are drugs suitable for use in both diagnostic and therapeutic applications, and have played an important role in the advancement of modern nuclear medicine. This review explains key elements that are common to successful theranostics and highlights significant developments in the field, including our own. Specific focus is given to peptides and those features that make them most suitable for theranostic application, as well as some key radioisotopes owing to their favourable properties and high clinical utility. This report provides an overview of the techniques at the researcher’s disposal, how they have been applied to current clinically significant targets, and how they might be used and improved upon for future targets.
  • Item
    Thumbnail Image
    The Protein Landscape of Mucinous Ovarian Cancer: Towards a Theranostic
    Youssef, A ; Haskali, MB ; Gorringe, KL (MDPI, 2021-11)
    MOC is a rare histotype of epithelial ovarian cancer, and current management options are inadequate for the treatment of late stage or recurrent disease. A shift towards personalised medicines in ovarian cancer is being observed, with trials targeting specific molecular pathways, however, MOC lags due to its rarity. Theranostics is a rapidly evolving category of personalised medicine, encompassing both a diagnostic and therapeutic approach by recognising targets that are expressed highly in tumour tissue in order to deliver a therapeutic payload. The present review evaluates the protein landscape of MOC in recent immunohistochemical- and proteomic-based research, aiming to identify potential candidates for theranostic application. Fourteen proteins were selected based on cell membrane localisation: HER2, EGFR, FOLR1, RAC1, GPR158, CEACAM6, MUC16, PD-L1, NHE1, CEACAM5, MUC1, ACE2, GP2, and PTPRH. Optimal proteins to target using theranostic agents must exhibit high membrane expression on cancerous tissue with low expression on healthy tissue to afford improved disease outcomes with minimal off-target effects and toxicities. We provide guidelines to consider in the selection of a theranostic target for MOC and suggest future directions in evaluating the results of this review.
  • Item
    Thumbnail Image
    Gallium Fluoride Complexes with Acyclic Bispicolinic Ligands as Potential New Fluorine-18 Labelled Imaging Agents
    Koay, H ; Haskali, MB ; Roselt, PD ; White, JM ; Donnelly, PS (WILEY-V C H VERLAG GMBH, 2020-09-22)
    The positron‐emitting radionuclide, fluorine‐18, is used to radiolabel molecules to develop tracers for diagnostic imaging with positron‐emission tomography. There is growing interest in the potential of using strong coordinate bonds between electropositive Ga(III) and electronegative fluoride (≈ 557 kJ/mol) to provide new methods of incorporating fluorine‐18 into molecules. The potential of gallium(III) complexes with acyclic pentadentate bispicolinic acid containing ligands (H2L1–3) to form ternary complexes with fluoride, [GaL1–3F] was investigated with a view to developing new methods for fluorine‐18 radiolabelling. A solid‐phase peptide synthesis approach was used to produce a bispicolinic acid chelator with a lysine residue. Characterisation of [GaL1X] (X = OH, Cl, F) by X‐ray crystallography revealed that L1 acted as dianionic N2O2 donor to the Ga(III) with the fifth site occupied by a monodentate anion (OH–, Cl– or F–). Despite its high stability in aqueous mixture and [D6]DMSO and the straightforward synthesis of [GaL1F], it was only possible to form the radioactive analogue [18F][GaL1F] in low radiochemical yields.
  • Item
    Thumbnail Image
    4-Nitrophenyl activated esters are superior synthons for indirect radiofluorination of biomolecules
    Haskali, MB ; Farnsworth, AL ; Roselt, PD ; Hutton, CA (ROYAL SOC CHEMISTRY, 2020-08-01)
    Indirect radiolabelling has for a long time been the mainstay strategy for radiofluorination of biomolecules. Acylation of biomolecules through the use of an 18F-labelled activated ester is a standard method for indirect radiolabelling. However, the preparation of 18F-labelled activated esters is typically a complex and multistep procedure. Herein, we describe the use of 4-nitrophenyl (PNP) activated esters to rapidly prepare 18F-labelled acylation synthons in one step. Furthermore, we present a comparative study of PNP activated esters and the commonly utilised 2,3,5,6-tetrafluorphenyl (TFP) activated esters under direct radiofluorination conditions and demonstrate their relative acylation behaviour. We demonstrate the superiority of PNP esters under direct radiofluorination conditions with favourable acylation kinetics.
  • Item
    Thumbnail Image
    PET quantification of brain O-GlcNAcase with [18F]LSN3316612 in healthy human volunteers
    Lee, J-H ; Liow, J-S ; Paul, S ; Morse, CL ; Haskali, MB ; Manly, L ; Shcherbinin, S ; Ruble, JC ; Kant, N ; Collins, EC ; Nuthall, HN ; Zanotti-Fregonara, P ; Zoghbi, SS ; Pike, VW ; Innis, RB (SPRINGER, 2020-03-14)
    BACKGROUND: Previous studies found that [18F]LSN3316612 was a promising positron emission tomography (PET) radioligand for imaging O-GlcNAcase in nonhuman primates and human volunteers. This study sought to further evaluate the suitability of [18F]LSN3316612 for human clinical research. METHODS: Kinetic evaluation of [18F]LSN3316612 was conducted in a combined set of baseline brain scans from 17 healthy human volunteers and test-retest imaging was conducted in 10 of these volunteers; another 6 volunteers had whole-body scans to measure radiation exposure to body organs. Total distribution volume (VT) estimates were compared for the one- and two-tissue compartment models with the arterial input function. Test-retest variability and reliability were evaluated via mean difference and intraclass correlation coefficient (ICC). The time stability of VT was assessed down to a 30-min scan time. An alternative quantification method for [18F]LSN3316612 binding without blood was also investigated to assess the possibility of eliminating arterial sampling. RESULTS: Brain uptake was generally high and could be quantified as VT with excellent identifiability using the two-tissue compartment model. [18F]LSN3316612 exhibited good absolute test-retest variability (12.5%), but the arithmetic test-retest variability was far from 0 (11.3%), reflecting a near-uniform increase of VT on the retest scan in nine of 10 volunteers. VT values were stable after 110 min in all brain regions, suggesting that no radiometabolites accumulated in the brain. Measurements obtained using only brain activity (i.e., area under the curve (AUC) from 150-180 min) correlated strongly with regional VT values during test-retest conditions (R2 = 0.84), exhibiting similar reliability to VT (ICC = 0.68 vs. 0.64). Estimated radiation exposure for [18F]LSN3316612 PET was 20.5 ± 2.1 μSv/MBq, comparable to other 18F-labeled radioligands for brain imaging. CONCLUSIONS: [18F]LSN3316612 is an excellent PET radioligand for imaging O-GlcNAcase in the human brain. Alternative quantification without blood is possible, at least for within-subject repeat studies. However, the unexplained increase of VT under retest conditions requires further investigation.