Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    IL-15 Preconditioning Augments CAR T Cell Responses to Checkpoint Blockade for Improved Treatment of Solid Tumors
    Giuffrida, L ; Sek, K ; Henderson, MA ; House, IG ; Lai, J ; Chen, AXY ; Todd, KL ; Petley, E ; Mardiana, S ; Todorovski, I ; Gruber, E ; Kelly, MJ ; Solomon, BJ ; Vervoort, SJ ; Johnstone, RW ; Parish, IA ; Neeson, PJ ; Kats, LM ; Darcy, PK ; Beavis, PA (CELL PRESS, 2020-11-04)
    Chimeric antigen receptor (CAR) T cell therapy has been highly successful in hematological malignancies leading to their US Food and Drug Administration (FDA) approval. However, the efficacy of CAR T cells in solid tumors is limited by tumor-induced immunosuppression, leading to the development of combination approaches, such as adjuvant programmed cell death 1 (PD-1) blockade. Current FDA-approved methods for generating CAR T cells utilize either anti-CD3 and interleukin (IL)-2 or anti-CD3/CD28 beads, which can generate a T cell product with an effector/exhausted phenotype. Whereas different cytokine preconditioning milieu, such as IL-7/IL-15, have been shown to promote T cell engraftment, the impact of this approach on CAR T cell responses to adjuvant immune-checkpoint blockade has not been assessed. In the current study, we reveal that the preconditioning of CAR T cells with IL-7/IL-15 increased CAR T cell responses to anti-PD-1 adjuvant therapy. This was associated with the emergence of an intratumoral CD8+CD62L+TCF7+IRF4- population that was highly responsive to anti-PD-1 therapy and mediated the vast majority of transcriptional and epigenetic changes in vivo following PD-1 blockade. Our data indicate that preservation of CAR T cells in a TCF7+ phenotype is crucial for their responsiveness to adjuvant immunotherapy approaches and should be a key consideration when designing clinical protocols.
  • Item
    Thumbnail Image
    Inhibition of mutant IDH1 promotes cycling of acute myeloid leukemia stem cells
    Gruber, E ; So, J ; Lewis, AC ; Franich, R ; Cole, R ; Martelotto, LG ; Rogers, AJ ; Vidacs, E ; Fraser, P ; Stanley, K ; Jones, L ; Trigos, A ; Thio, N ; Li, J ; Nicolay, B ; Daigle, S ; Tron, AE ; Hyer, ML ; Shortt, J ; Johnstone, RW ; Kats, LM (CELL PRESS, 2022-08-16)
    Approximately 20% of acute myeloid leukemia (AML) patients carry mutations in IDH1 or IDH2 that result in over-production of the oncometabolite D-2-hydroxyglutarate (2-HG). Small molecule inhibitors that block 2-HG synthesis can induce complete morphological remission; however, almost all patients eventually acquire drug resistance and relapse. Using a multi-allelic mouse model of IDH1-mutant AML, we demonstrate that the clinical IDH1 inhibitor AG-120 (ivosidenib) exerts cell-type-dependent effects on leukemic cells, promoting delayed disease regression. Although single-agent AG-120 treatment does not fully eradicate the disease, it increases cycling of rare leukemia stem cells and triggers transcriptional upregulation of the pyrimidine salvage pathway. Accordingly, AG-120 sensitizes IDH1-mutant AML to azacitidine, with the combination of AG-120 and azacitidine showing vastly improved efficacy in vivo. Our data highlight the impact of non-genetic heterogeneity on treatment response and provide a mechanistic rationale for the observed combinatorial effect of AG-120 and azacitidine in patients.
  • Item
    Thumbnail Image
    Inhibition of pyrimidine biosynthesis targets protein translation in acute myeloid leukemia
    So, J ; Lewis, AC ; Smith, LK ; Stanley, K ; Franich, R ; Yoannidis, D ; Pijpers, L ; Dominguez, P ; Hogg, SJ ; Vervoort, SJ ; Brown, FC ; Johnstone, RW ; McDonald, G ; Ulanet, DB ; Murtie, J ; Gruber, E ; Kats, LM (WILEY, 2022-07-07)
    The mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) catalyzes one of the rate-limiting steps in de novo pyrimidine biosynthesis, a pathway that provides essential metabolic precursors for nucleic acids, glycoproteins, and phospholipids. DHODH inhibitors (DHODHi) are clinically used for autoimmune diseases and are emerging as a novel class of anticancer agents, especially in acute myeloid leukemia (AML) where pyrimidine starvation was recently shown to reverse the characteristic differentiation block in AML cells. Herein, we show that DHODH blockade rapidly shuts down protein translation in leukemic stem cells (LSCs) and has potent and selective activity against multiple AML subtypes. Moreover, we find that ablation of CDK5, a gene that is recurrently deleted in AML and related disorders, increases the sensitivity of AML cells to DHODHi. Our studies provide important molecular insights and identify a potential biomarker for an emerging strategy to target AML.
  • Item
    Thumbnail Image
    Epigenetic Activation of Plasmacytoid DCs Drives IFNAR-Dependent Therapeutic Differentiation of AML
    Salmon, JM ; Todorovski, I ; Stanley, KL ; Bruedigam, C ; Kearney, CJ ; Martelotto, LG ; Rossello, F ; Semple, T ; Arnau, GM ; Zethoven, M ; Bots, M ; Bjelosevic, S ; Cluse, LA ; Fraser, PJ ; Litalien, V ; Vidacs, E ; Mcarthur, K ; Matthews, AY ; Gressier, E ; de Weerd, NA ; Lichte, J ; Kelly, MJ ; Hogg, SJ ; Hertzog, PJ ; Kats, LM ; Vervoort, SJ ; De Carvalho, DD ; Scheu, S ; Bedoui, S ; Kile, BT ; Lane, SW ; Perkins, AC ; Wei, AH ; Dominguez, PM ; Johnstone, RW (AMER ASSOC CANCER RESEARCH, 2022-06-02)
    UNLABELLED: Pharmacologic inhibition of epigenetic enzymes can have therapeutic benefit against hematologic malignancies. In addition to affecting tumor cell growth and proliferation, these epigenetic agents may induce antitumor immunity. Here, we discovered a novel immunoregulatory mechanism through inhibition of histone deacetylases (HDAC). In models of acute myeloid leukemia (AML), leukemia cell differentiation and therapeutic benefit mediated by the HDAC inhibitor (HDACi) panobinostat required activation of the type I interferon (IFN) pathway. Plasmacytoid dendritic cells (pDC) produced type I IFN after panobinostat treatment, through transcriptional activation of IFN genes concomitant with increased H3K27 acetylation at these loci. Depletion of pDCs abrogated panobinostat-mediated induction of type I IFN signaling in leukemia cells and impaired therapeutic efficacy, whereas combined treatment with panobinostat and IFNα improved outcomes in preclinical models. These discoveries offer a new therapeutic approach for AML and demonstrate that epigenetic rewiring of pDCs enhances antitumor immunity, opening the possibility of exploiting this approach for immunotherapies. SIGNIFICANCE: We demonstrate that HDACis induce terminal differentiation of AML through epigenetic remodeling of pDCs, resulting in production of type I IFN that is important for the therapeutic effects of HDACis. The study demonstrates the important functional interplay between the immune system and leukemias in response to HDAC inhibition. This article is highlighted in the In This Issue feature, p. 1397.
  • Item
    No Preview Available
    Epigenetic reprogramming of plasmacytoid dendritic cells drives type I interferon-dependent differentiation of acute myeloid leukemias for therapeutic benefit
    Salmon, J ; Todorovski, I ; Vervoort, S ; Stanley, K ; Kearney, C ; Martelotto, L ; Rossello, F ; Semple, T ; Mir-Arnau, G ; Zethoven, M ; Bots, M ; Vidacs, E ; McArthur, K ; Gressier, E ; de Weerd, N ; Lichte, J ; Kelly, M ; Cluse, L ; Hogg, S ; Hertzog, P ; Kats, L ; de Carvalho, D ; Scheu, S ; Bedoui, S ; Kile, B ; Wei, A ; Dominguez, P ; Johnstone, R ( 2020-08-24)
    Pharmacological inhibition of epigenetic enzymes can have therapeutic benefit, particularly against hematological malignancies. While these agents can affect tumor cell growth and proliferation, recent studies have demonstrated that pharmacological de-regulation of epigenetic modifiers may additionally mediate anti-tumor immune responses. Here we discovered a novel mechanism of immune regulation through the inhibition of histone deacetylases (HDACs). In a genetically engineered model of t(8;21) AML, leukemia cell differentiation and therapeutic benefit mediated by the HDAC inhibitor panobinostat required activation of the type I interferon (IFN) signaling pathway. Plasmacytoid dendritic cells (pDCs) were identified as the cells producing type I IFN in response to panobinostat, through transcriptional activation of IFN genes concomitant with increased H3K27 acetylation at these loci. Depletion of pDCs abrogated panobinostat-mediated activation of type I IFN signaling in leukemia cells and impaired therapeutic efficacy, while combined treatment of panobinostat and recombinant IFNα improved therapeutic outcomes. These discoveries offer a new therapeutic approach for t(8;21) AML and demonstrate that epigenetic rewiring of pDCs enhances anti-tumor immunity, opening the possibility of exploiting this cell type as a new target for immunotherapy.