Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Molecular comparison of interval and screen-detected breast cancers
    Cheasley, D ; Li, N ; Rowley, SM ; Elder, K ; Mann, GB ; Loi, S ; Savas, P ; Goode, DL ; Kader, T ; Zethoven, M ; Semple, T ; Fox, SB ; Pang, J-M ; Byrne, D ; Devereux, L ; Nickson, C ; Procopio, P ; Lee, G ; Hughes, S ; Saunders, H ; Fujihara, KM ; Kuykhoven, K ; Connaughton, J ; James, PA ; Gorringe, KL ; Campbell, IG (WILEY, 2019-06)
  • Item
    Thumbnail Image
    The Subclonal Architecture of Metastatic Breast Cancer: Results from a Prospective Community-Based Rapid Autopsy Program "CASCADE"
    Savas, P ; Teo, ZL ; Lefevre, C ; Flensburg, C ; Caramia, F ; Alsop, K ; Mansour, M ; Francis, PA ; Thorne, HA ; Silva, MJ ; Kanu, N ; Dietzen, M ; Rowan, A ; Kschischo, M ; Fox, S ; Bowtell, DD ; Dawson, S-J ; Speed, TP ; Swanton, C ; Loi, S ; Ladanyi, M (PUBLIC LIBRARY SCIENCE, 2016-12)
    BACKGROUND: Understanding the cancer genome is seen as a key step in improving outcomes for cancer patients. Genomic assays are emerging as a possible avenue to personalised medicine in breast cancer. However, evolution of the cancer genome during the natural history of breast cancer is largely unknown, as is the profile of disease at death. We sought to study in detail these aspects of advanced breast cancers that have resulted in lethal disease. METHODS AND FINDINGS: Three patients with oestrogen-receptor (ER)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer and one patient with triple negative breast cancer underwent rapid autopsy as part of an institutional prospective community-based rapid autopsy program (CASCADE). Cases represented a range of management problems in breast cancer, including late relapse after early stage disease, de novo metastatic disease, discordant disease response, and disease refractory to treatment. Between 5 and 12 metastatic sites were collected at autopsy together with available primary tumours and longitudinal metastatic biopsies taken during life. Samples underwent paired tumour-normal whole exome sequencing and single nucleotide polymorphism (SNP) arrays. Subclonal architectures were inferred by jointly analysing all samples from each patient. Mutations were validated using high depth amplicon sequencing. Between cases, there were significant differences in mutational burden, driver mutations, mutational processes, and copy number variation. Within each case, we found dramatic heterogeneity in subclonal structure from primary to metastatic disease and between metastatic sites, such that no single lesion captured the breadth of disease. Metastatic cross-seeding was found in each case, and treatment drove subclonal diversification. Subclones displayed parallel evolution of treatment resistance in some cases and apparent augmentation of key oncogenic drivers as an alternative resistance mechanism. We also observed the role of mutational processes in subclonal evolution. Limitations of this study include the potential for bias introduced by joint analysis of formalin-fixed archival specimens with fresh specimens and the difficulties in resolving subclones with whole exome sequencing. Other alterations that could define subclones such as structural variants or epigenetic modifications were not assessed. CONCLUSIONS: This study highlights various mechanisms that shape the genome of metastatic breast cancer and the value of studying advanced disease in detail. Treatment drives significant genomic heterogeneity in breast cancers which has implications for disease monitoring and treatment selection in the personalised medicine paradigm.
  • Item
    Thumbnail Image
    Agonist immunotherapy restores T cell function following MEK inhibition improving efficacy in breast cancer
    Dushyanthen, S ; Teo, ZL ; Caramia, F ; Savas, P ; Mintoff, CP ; Virassamy, B ; Henderson, MA ; Luen, SJ ; Mansour, M ; Kershaw, MH ; Trapani, JA ; Neeson, PJ ; Salgado, R ; McArthur, GA ; Balko, JM ; Beavis, PA ; Darcy, PK ; Loi, S (NATURE PUBLISHING GROUP, 2017-09-19)
    The presence of tumor-infiltrating lymphocytes in triple-negative breast cancers is correlated with improved outcomes. Ras/MAPK pathway activation is associated with significantly lower levels of tumor-infiltrating lymphocytes in triple-negative breast cancers and while MEK inhibition can promote recruitment of tumor-infiltrating lymphocytes to the tumor, here we show that MEK inhibition adversely affects early onset T-cell effector function. We show that α-4-1BB and α-OX-40 T-cell agonist antibodies can rescue the adverse effects of MEK inhibition on T cells in both mouse and human T cells, which results in augmented anti-tumor effects in vivo. This effect is dependent upon increased downstream p38/JNK pathway activation. Taken together, our data suggest that although Ras/MAPK pathway inhibition can increase tumor immunogenicity, the negative impact on T-cell activity is functionally important. This undesirable impact is effectively prevented by combination with T-cell immune agonist immunotherapies resulting in superior therapeutic efficacy.MEK inhibition in breast cancer is associated with increased tumour infiltrating lymphocytes (TILs), however, MAPK activity is required for T cells function. Here the authors show that TILs activity following MEK inhibition can be enhanced by agonist immunotherapy resulting in synergic therapeutic effects.
  • Item
    Thumbnail Image
    Clinical validity and Utility of Tumor-infiltrating Lymphocytes in Routine Clinical Practice for Breast Cancer Patients: Current and Future Directions
    Wein, L ; Savas, P ; Luen, SJ ; Virassamy, B ; Salgado, R ; Loi, S (FRONTIERS MEDIA SA, 2017-08-03)
    The interest in tumor-infiltrating lymphocytes (TILs) as a prognostic biomarker in breast cancer has grown in recent years. Biomarkers must undergo comprehensive evaluation in terms of analytical validity, clinical validity and clinical utility before they can be accepted as part of clinical practice. The International Immuno-Oncology Biomarker Working Group has developed a practice guideline on scoring TILs in breast cancer in order to standardize TIL assessment. The prognostic value of TILs as a biomarker in early-stage breast cancer has been established by assessing tumor samples in thousands of patients from large prospective clinical trials of adjuvant therapy. There is a strong linear relationship between increase in TILs and improved disease-free survival for triple-negative and HER2-positive disease. Higher levels of TILs have also been associated with increased rates of pathological complete response to neoadjuvant therapy. TILs have potential clinical utility in breast cancer in a number of areas. These include prediction of responders to immune checkpoint blockade, identification of primary HER2-positive and triple-negative patients who have excellent prognoses and may thus be appropriate for treatment de-escalation, and potentially incorporation into a neoadjuvant endpoint which may be a better surrogate maker for drug development.
  • Item
    Thumbnail Image
    Stereotactic ablative body radiotherapy (SABR) for bone only oligometastatic breast cancer: A prospective clinical trial
    David, S ; Tan, J ; Savas, P ; Bressel, M ; Kelly, D ; Foroudi, F ; Loi, S ; Siva, S (CHURCHILL LIVINGSTONE, 2020-02)
    BACKGROUND: Stereotactic ablative body radiotherapy (SABR) is an emerging noninvasive approach for the treatment of oligometastases. Limited prospective evidence is available in breast cancer. OBJECTIVES: To determine the safety and feasibility of single fraction SABR for patients with bone only oligometastatic breast cancer. Secondary endpoints were local and distant progression-free survival (LPFS and DPFS), toxicity and response assessment. METHODS AND MATERIALS: In this single institution prospective trial we screened patients with computed tomography, bone scan, and sodium fluoride positron emission tomography. Eligible patients had one to three bone only oligometastases. All patients were treated at a dose of 20Gy in 1 fraction to each metastasis. Kaplan-Meier methods were used to determine local and distant progression free survival (LPFS and DPFS). Toxicity was graded using Common Terminology Criteria for Adverse Event version 4.0. RESULTS: 15 eligible patients were recruited to the study. Median follow-up time was 24 months. The treatment was feasible in 12 (80%) of patients with 3 (20%) of patients having treatment delayed by more than 3 days. 10 (67%) of patients experienced grade 1 treatment related toxicity, 4 (27%) experienced grade 2 toxicity and no patients experienced grade 3 or 4 treatment related toxicity. The two-year LPFS was 100%, DPFS was 67%. CONCLUSION: We observed that SABR is feasible, well tolerated and effective in this cohort with two thirds of patients disease-free at two years. In selected patients with bone-only oligometastatic disease, SABR could be considered a treatment option. Randomised trials are required to assess the impact of SABR on overall survival when compared to the standard of care.
  • Item
    Thumbnail Image
    Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer
    Kos, Z ; Roblin, E ; Kim, RS ; Michiels, S ; Gallas, BD ; Chen, W ; van de Vijver, KK ; Goel, S ; Adams, S ; Demaria, S ; Viale, G ; Nielsen, TO ; Badve, SS ; Symmans, WF ; Sotiriou, C ; Rimm, DL ; Hewitt, S ; Denkert, C ; Loibl, S ; Luen, SJ ; Bartlett, JMS ; Savas, P ; Pruneri, G ; Dillon, DA ; Cheang, MCU ; Tutt, A ; Hall, JA ; Kok, M ; Horlings, HM ; Madabhushi, A ; van der Laak, J ; Ciompi, F ; Laenkholm, A-V ; Bellolio, E ; Gruosso, T ; Fox, SB ; Araya, JC ; Floris, G ; Hudecek, J ; Voorwerk, L ; Beck, AH ; Kerner, J ; Larsimont, D ; Declercq, S ; Van den Eynden, G ; Pusztai, L ; Ehinger, A ; Yang, W ; AbdulJabbar, K ; Yuan, Y ; Singh, R ; Hiley, C ; al Bakir, M ; Lazar, AJ ; Naber, S ; Wienert, S ; Castillo, M ; Curigliano, G ; Dieci, M-V ; Andre, F ; Swanton, C ; Reis-Filho, J ; Sparano, J ; Balslev, E ; Chen, I-C ; Stovgaard, EIS ; Pogue-Geile, K ; Blenman, KRM ; Penault-Llorca, F ; Schnitt, S ; Lakhani, SR ; Vincent-Salomon, A ; Rojo, F ; Braybrooke, JP ; Hanna, MG ; Soler-Monso, MT ; Bethmann, D ; Castaneda, CA ; Willard-Gallo, K ; Sharma, A ; Lien, H-C ; Fineberg, S ; Thagaard, J ; Comerma, L ; Gonzalez-Ericsson, P ; Brogi, E ; Loi, S ; Saltz, J ; Klaushen, F ; Cooper, L ; Amgad, M ; Moore, DA ; Salgado, R (NATURE RESEARCH, 2020-05-12)
    Stromal tumor-infiltrating lymphocytes (sTILs) are important prognostic and predictive biomarkers in triple-negative (TNBC) and HER2-positive breast cancer. Incorporating sTILs into clinical practice necessitates reproducible assessment. Previously developed standardized scoring guidelines have been widely embraced by the clinical and research communities. We evaluated sources of variability in sTIL assessment by pathologists in three previous sTIL ring studies. We identify common challenges and evaluate impact of discrepancies on outcome estimates in early TNBC using a newly-developed prognostic tool. Discordant sTIL assessment is driven by heterogeneity in lymphocyte distribution. Additional factors include: technical slide-related issues; scoring outside the tumor boundary; tumors with minimal assessable stroma; including lymphocytes associated with other structures; and including other inflammatory cells. Small variations in sTIL assessment modestly alter risk estimation in early TNBC but have the potential to affect treatment selection if cutpoints are employed. Scoring and averaging multiple areas, as well as use of reference images, improve consistency of sTIL evaluation. Moreover, to assist in avoiding the pitfalls identified in this analysis, we developed an educational resource available at www.tilsinbreastcancer.org/pitfalls.
  • Item
    Thumbnail Image
    Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group
    Amgad, M ; Stovgaard, ES ; Balslev, E ; Thagaard, J ; Chen, W ; Dudgeon, S ; Sharma, A ; Kerner, JK ; Denkert, C ; Yuan, Y ; AbdulJabbar, K ; Wienert, S ; Savas, P ; Voorwerk, L ; Beck, AH ; Madabhushi, A ; Hartman, J ; Sebastian, MM ; Horlings, HM ; Hudecek, J ; Ciompi, F ; Moore, DA ; Singh, R ; Roblin, E ; Balancin, ML ; Mathieu, M-C ; Lennerz, JK ; Kirtani, P ; Chen, I-C ; Braybrooke, JP ; Pruneri, G ; Demaria, S ; Adams, S ; Schnitt, SJ ; Lakhani, SR ; Rojo, F ; Comerma, L ; Badve, SS ; Khojasteh, M ; Symmans, WF ; Sotiriou, C ; Gonzalez-Ericsson, P ; Pogue-Geile, KL ; Kim, RS ; Rimm, DL ; Viale, G ; Hewitt, SM ; Bartlett, JMS ; Penault-Llorca, F ; Goel, S ; Lien, H-C ; Loibl, S ; Kos, Z ; Loi, S ; Hanna, MG ; Michiels, S ; Kok, M ; Nielsen, TO ; Lazar, AJ ; Bago-Horvath, Z ; Kooreman, LFS ; van der Laak, JAWM ; Saltz, J ; Gallas, BD ; Kurkure, U ; Barnes, M ; Salgado, R ; Cooper, LAD (NATURE RESEARCH, 2020-05-12)
    Assessment of tumor-infiltrating lymphocytes (TILs) is increasingly recognized as an integral part of the prognostic workflow in triple-negative (TNBC) and HER2-positive breast cancer, as well as many other solid tumors. This recognition has come about thanks to standardized visual reporting guidelines, which helped to reduce inter-reader variability. Now, there are ripe opportunities to employ computational methods that extract spatio-morphologic predictive features, enabling computer-aided diagnostics. We detail the benefits of computational TILs assessment, the readiness of TILs scoring for computational assessment, and outline considerations for overcoming key barriers to clinical translation in this arena. Specifically, we discuss: 1. ensuring computational workflows closely capture visual guidelines and standards; 2. challenges and thoughts standards for assessment of algorithms including training, preanalytical, analytical, and clinical validation; 3. perspectives on how to realize the potential of machine learning models and to overcome the perceptual and practical limits of visual scoring.
  • Item
    Thumbnail Image
    Clinical implications of prospective genomic profiling of metastatic breast cancer patients
    van Geelen, CT ; Savas, P ; Teo, ZL ; Luen, SJ ; Weng, C-F ; Ko, Y-A ; Kuykhoven, KS ; Caramia, F ; Salgado, R ; Francis, PA ; Dawson, S-J ; Fox, SB ; Fellowes, A ; Loi, S (BMC, 2020-08-18)
    BACKGROUND: Metastatic breast cancer remains incurable. Next-generation sequencing (NGS) offers the ability to identify actionable genomic alterations in tumours which may then be matched with targeted therapies, but the implementation and utility of this approach is not well defined for patients with metastatic breast cancer. METHODS: We recruited patients with advanced breast cancer of any subtype for prospective targeted NGS of their most recent tumour samples, using a panel of 108 breast cancer-specific genes. Genes were classified as actionable or non-actionable using the European Society of Medical Oncology Scale for Clinical Actionability of Molecular Targets (ESCAT) guidelines. RESULTS: Between February 2014 and May 2019, 322 patients were enrolled onto the study, with 72% (n = 234) of patients successfully sequenced (n = 357 samples). The majority (74%, n = 171) of sequenced patients were found to carry a potentially actionable alteration, the most common being a PIK3CA mutation. Forty-three percent (n = 74) of patients with actionable alterations were referred for a clinical trial or referred for confirmatory germline testing or had a change in therapy outside of clinical trials. We found alterations in AKT1, BRCA2, CHEK2, ESR1, FGFR1, KMT2C, NCOR1, PIK3CA and TSC2 to be significantly enriched in our metastatic population compared with primary breast cancers. Concordance between primary and metastatic samples for key driver genes (TP53, ERBB2 amplification) was > 75%. Additionally, we found that patients with a higher number of mutations had a significantly worse overall survival. CONCLUSION: Genomic profiling of patients with metastatic breast cancer can have clinical implications and should be considered in all suitable patients.
  • Item
    Thumbnail Image
    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials
    Hudecek, J ; Voorwerk, L ; van Seijen, M ; Nederlof, I ; de Maaker, M ; van den Berg, J ; van de Vijver, KK ; Sikorska, K ; Adams, S ; Demaria, S ; Viale, G ; Nielsen, TO ; Badve, SS ; Michiels, S ; Symmans, WF ; Sotiriou, C ; Rimm, DL ; Hewitt, SM ; Denkert, C ; Loibl, S ; Loi, S ; Bartlett, JMS ; Pruneri, G ; Dillon, DA ; Cheang, MCU ; Tutt, A ; Hall, JA ; Kos, Z ; Salgado, R ; Kok, M ; Horlings, HM (NATURE RESEARCH, 2020-05-12)
    Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting.