Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 21
  • Item
    Thumbnail Image
    THE EFFECT OF HYPOBARIC HYPOXIA ON MISONIDAZOLE BINDING IN NORMAL AND TUMOR-BEARING MICE
    MACMANUS, MP ; MAXWELL, AP ; ABRAM, WP ; BRIDGES, JM (SPRINGERNATURE, 1989-03)
    The effect of hypobaric hypoxia on the in vivo binding of misonidazole was investigated in normal mice and mice bearing T50/80 or CA NT mammary carcinomas. After the intraperitoneal injection of radiolabelled misonidazole, mice were randomised to breathe either room air or air at 0.5 atmospheres. The distribution of misonidazole in liver, kidney, heart, spleen and tumour tissue, 24 h later, was studied by scintillation counting and by autoradiography. Significantly higher misonidazole binding occurred in the livers (x2.5), kidneys (x2.4), spleens (x2.9) and hearts (x1.8) of hypoxic mice compared to controls. Hypobaric hypoxia was associated with a greater than four-fold increase in misonidazole binding within T50/80 tumours. However, significantly higher binding was not demonstrated within CA NT tumours after exposure of tumour-bearing animals to hypoxic conditions. In autoradiographs of hypoxic liver, labelling was intense in regions near to hepatic veins but sparse in areas surrounding portal tracts. This pattern was striking and consistent. In hypoxic kidney, labelling was most intense over tubular cells, less intense over glomeruli and sparse in the renal medulla. It is likely that the hepatic and renal cortical distributions of misonidazole binding reflect local oxygen gradients.
  • Item
    Thumbnail Image
    Unproven medical devices and cancer therapy: big claims but no evidence.
    Mac Manus, M (Department of Biomedical Imaging, University of Malaya, Malaysia, 2008-07)
  • Item
    Thumbnail Image
    Conformal radiotherapy and molecular imaging: complementary technologies in cancer therapy.
    Mac Manus, M (Department of Biomedical Imaging, University of Malaya, Malaysia, 2006-01)
  • Item
    Thumbnail Image
    Improving radiation therapy for non-small cell lung cancer: molecular imaging and a team-based approach.
    Everitt, S ; Mac Manus, M (Department of Biomedical Imaging, University of Malaya, Malaysia, 2007-01)
    The successful integration of molecular imaging and radiation therapy has been shown to significantly impact the management of patients with non-small cell lung cancer (NSCLC). The collaboration of multidisciplinary team members, including radiation oncologists, radiation therapists, nuclear medicine physicians and physicists, has enabled PET/CT to be utilised for routine use throughout the radiotherapy treatment trajectory. Applications include disease diagnosis and staging, target volume definition for radiation therapy and monitoring tumour response to treatment. Not only has the adoption of this technology demonstrated benefits for our current patients, it is also opening doors for significant research in the future.
  • Item
    Thumbnail Image
    Incorporating PET information in radiation therapy planning.
    Macmanus, M ; Leong, T (Department of Biomedical Imaging, University of Malaya, Malaysia, 2007-01)
    PET scanning, because of its impressive sensitivity and accuracy, is being incorporated into the standard staging workup for many cancers. These include lung cancer, lymphomas, head and neck cancers, and oesophageal cancers. PET often provides incremental information about the patient's disease status, adding to the data obtained from structural imaging methods, such as, CT scan or MRI. PET commonly upstages patients into more advanced disease categories. Incorporation of PET information into the radiotherapy planning process has the potential to reduce the risks of geographic miss and can help minimise unnecessary irradiation of normal tissues. The best means of incorporating PET information into radiotherapy planning is uncertain, and considerable effort is being expended in this area of research.
  • Item
    Thumbnail Image
    Acute radiation oesophagitis associated with 2-deoxy-2-[18F]fluoro-d-glucose uptake on positron emission tomography/CT during chemo-radiation therapy in patients with non-small-cell lung cancer
    Everitt, S ; Callahan, J ; Obeid, E ; Hicks, RJ ; Mac Manus, M ; Ball, D (WILEY, 2017-10)
    INTRODUCTION: Acute radiation oesophagitis (ARO) is frequently experienced by patients receiving concurrent chemo-radiation therapy (cCRT) for non-small-cell lung cancer (NSCLC). We investigated ARO symptoms (CTCAE v3.0), radiation dose and oesophageal FDG PET/CT uptake. METHOD: Candidates received cCRT (60 Gy, 2 Gy/fx) and sequential FDG PET/CT (baseline FDG0 , FDGwk2 and FDGwk4 ). Mean and maximum standardized uptake value (SUVmean and SUVmax) and radiation dose (Omean and Omax ) were calculated within the whole oesophagus and seven sub-regions (5-60 Gy). RESULTS: Forty-four patients underwent FDG0 and FDGwk2 , and 41 (93%) received FDGwk4 , resulting in 129 PET/CT scans for analysis. Of 29 (66%) patients with ≥ grade 2 ARO, SUVmax (mean ± SD) increased from FDG0 to FDGwk4 (3.06 ± 0.69 to 3.83 ± 1.27, P = 0.0019) and FDGwk2 to FDGwk4 (3.10 ± 0.75 to 3.83 ± 1.27, P = 0.0046). Radiation dose (mean ± SD) was higher in grade ≥2 patients; Omean (47.5 ± 20 vs 53.9 ± 10.2, P = 0.0061), Omax (13.7 ± 9.6 vs 20.1 ± 10.6, P = 0.0009) and V40 Gy (8.0 ± 8.2 vs 11.9 ± 7.3, P = 0.0185). CONCLUSIONS: FDGwk4 SUVmax and radiation dose were associated with ≥ grade 2 ARO. Compared to subjective assessments, future interim FDG PET/CT acquired for disease response assessment may also be utilized to objectively characterize ARO severity and image-guided oesophageal dose constraints.
  • Item
    Thumbnail Image
    Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211
    Hatt, M ; Lee, JA ; Schmidtlein, CR ; El Naqa, I ; Caldwell, C ; De Bernardi, E ; Lu, W ; Das, S ; Geets, X ; Gregoire, V ; Jeraj, R ; MacManus, MP ; Mawlawi, OR ; Nestle, U ; Pugachev, AB ; Schoeder, H ; Shepherd, T ; Spezi, E ; Visvikis, D ; Zaidi, H ; Kirov, AS (WILEY, 2017-06)
    PURPOSE: The purpose of this educational report is to provide an overview of the present state-of-the-art PET auto-segmentation (PET-AS) algorithms and their respective validation, with an emphasis on providing the user with help in understanding the challenges and pitfalls associated with selecting and implementing a PET-AS algorithm for a particular application. APPROACH: A brief description of the different types of PET-AS algorithms is provided using a classification based on method complexity and type. The advantages and the limitations of the current PET-AS algorithms are highlighted based on current publications and existing comparison studies. A review of the available image datasets and contour evaluation metrics in terms of their applicability for establishing a standardized evaluation of PET-AS algorithms is provided. The performance requirements for the algorithms and their dependence on the application, the radiotracer used and the evaluation criteria are described and discussed. Finally, a procedure for algorithm acceptance and implementation, as well as the complementary role of manual and auto-segmentation are addressed. FINDINGS: A large number of PET-AS algorithms have been developed within the last 20 years. Many of the proposed algorithms are based on either fixed or adaptively selected thresholds. More recently, numerous papers have proposed the use of more advanced image analysis paradigms to perform semi-automated delineation of the PET images. However, the level of algorithm validation is variable and for most published algorithms is either insufficient or inconsistent which prevents recommending a single algorithm. This is compounded by the fact that realistic image configurations with low signal-to-noise ratios (SNR) and heterogeneous tracer distributions have rarely been used. Large variations in the evaluation methods used in the literature point to the need for a standardized evaluation protocol. CONCLUSIONS: Available comparison studies suggest that PET-AS algorithms relying on advanced image analysis paradigms provide generally more accurate segmentation than approaches based on PET activity thresholds, particularly for realistic configurations. However, this may not be the case for simple shape lesions in situations with a narrower range of parameters, where simpler methods may also perform well. Recent algorithms which employ some type of consensus or automatic selection between several PET-AS methods have potential to overcome the limitations of the individual methods when appropriately trained. In either case, accuracy evaluation is required for each different PET scanner and scanning and image reconstruction protocol. For the simpler, less robust approaches, adaptation to scanning conditions, tumor type, and tumor location by optimization of parameters is necessary. The results from the method evaluation stage can be used to estimate the contouring uncertainty. All PET-AS contours should be critically verified by a physician. A standard test, i.e., a benchmark dedicated to evaluating both existing and future PET-AS algorithms needs to be designed, to aid clinicians in evaluating and selecting PET-AS algorithms and to establish performance limits for their acceptance for clinical use. The initial steps toward designing and building such a standard are undertaken by the task group members.
  • Item
    Thumbnail Image
    The potential "additive" thromboembolic risk of radiotherapy
    Alexander, M ; Sryjanen, R ; Ball, D ; MacManus, M ; Burbury, K (WILEY, 2019-06)
  • Item
    Thumbnail Image
    Survival difference according to mutation status in a prospective cohort study of Australian patients with metastatic non-small-cell lung carcinoma
    Tan, L ; Alexander, M ; Officer, A ; MacManus, M ; Mileshkin, L ; Jennens, R ; Herath, D ; de Boer, R ; Fox, SB ; Ball, D ; Solomon, B (WILEY, 2018-01)
    BACKGROUND: Non-small-cell lung cancer (NSCLC) is a heterogeneous disease comprising not only different histological subtypes but also different molecular subtypes. AIM: To describe the frequency of oncogenic drivers in patients with metastatic NSCLC, the proportion of patients tested and survival difference according to mutation status in a single-institution study. METHODS: Metastatic NSCLC patients enrolled in a prospective Thoracic Malignancies Cohort Study between July 2012 and August 2016 were selected. Patients underwent molecular testing for epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK) gene rearrangements, Kirsten rat sarcoma (KRAS), B-Raf proto-oncogene (BRAF) mutations and ROS1 gene rearrangements. Survival was calculated using the Kaplan-Meier method for groups of interest, and comparisons were made using the log-rank test. RESULTS: A total of 392 patients were included, 43% of whom were female with median age of 64 years (28-92). Of 296 patients tested, 172 patients (58%) were positive for an oncogenic driver: 81 patients (27%) were EGFR positive, 25 patients (9%) were ALK positive, 57 patients (19%) had KRAS mutation and 9 patients (3%) were ROS1 or BRAF positive. Patients with an actionable mutation (EGFR/ALK) had a survival advantage when compared with patients who were mutation negative (hazard ratio (HR) 0.49; 95% confidence interval (CI) 0.33-0.71; P < 0.01). Survival difference between mutation negative and mutation status unknown was not statistically significant when adjusted for confounding factors in a multivariate analysis (HR 1.29; 95% CI 0.97-1.78, P = 0.08). CONCLUSION: In this prospective cohort, the presence of an actionable mutation was the strongest predictor of overall survival. These results confirm the importance of molecular testing and suggest likely survival benefit of identification and treatment of actionable oncogenes.
  • Item
    Thumbnail Image
    Predicting treatment Response based on Dual assessment of magnetic resonance Imaging kinetics and Circulating Tumor cells in patients with Head and Neck cancer (PREDICT-HN): matching 'liquid biopsy' and quantitative tumor modeling
    Ng, SP ; Bahig, H ; Wang, J ; Cardenas, CE ; Lucci, A ; Hall, CS ; Meas, S ; Sarli, VN ; Yuan, Y ; Urbauer, DL ; Ding, Y ; Ikner, S ; Vi, D ; Elgohari, BA ; Johnson, JM ; Skinner, HD ; Gunn, GB ; Garden, AS ; Phan, J ; Rosenthal, DI ; Morrison, WH ; Frank, SJ ; Hutcheson, KA ; Mohamed, ASR ; Lai, SY ; Ferrarotto, R ; MacManus, MP ; Fuller, CD (BMC, 2018-09-19)
    BACKGROUND: Magnetic resonance imaging (MRI) has improved capacity to visualize tumor and soft tissue involvement in head and neck cancers. Using advanced MRI, we can interrogate cell density using diffusion weighted imaging, a quantitative imaging that can be used during radiotherapy, when diffuse inflammatory reaction precludes PET imaging, and can assist with target delineation as well. Correlation of circulating tumor cells (CTCs) measurements with 3D quantitative tumor characterization could potentially allow selective, patient-specific response-adapted escalation or de-escalation of local therapy, and improve the therapeutic ratio, curing the greatest number of patients with the least toxicity. METHODS: The proposed study is designed as a prospective observational study and will collect pretreatment CT, MRI and PET/CT images, weekly serial MR imaging during RT and post treatment CT, MRI and PET/CT images. In addition, blood sample will be collected for biomarker analysis at those time intervals. CTC assessments will be performed on the CellSave tube using the FDA-approved CellSearch® Circulating Tumor Cell Kit (Janssen Diagnostics), and plasma from the EDTA blood samples will be collected, labeled with a de-identifying number, and stored at - 80 °C for future analyses. DISCUSSION: The primary objective of the study is to evaluate the prognostic value and correlation of weekly tumor response kinetics (gross tumor volume and MR signal changes) and circulating tumor cells of mucosal head and neck cancers during radiation therapy using MRI in predicting treatment response and clinical outcomes. This study will provide landmark information as to the utility of CTCs ('liquid biopsy) and tumor-specific functional quantitative imaging changes during treatment to guide personalization of treatment for future patients. Combining the biological information from CTCs and the structural information from MRI may provide more information than either modality alone. In addition, this study could potentially allow us to determine the optimal time to obtain MR imaging and/ or CTCs during radiotherapy to assess tumor response and provide guidance for patient selection and stratification for future dose escalation or de-escalation strategies. TRIAL REGISTRATION: Clinicaltrials.gov ( NCT03491176 ). Date of registration: 9th April 2018. (retrospectively registered). Date of enrolment of the first participant: 30th May 2017.