Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 57
  • Item
    Thumbnail Image
    Modifiable lifestyle risk factors and survival after diagnosis with multiple myeloma
    Cheah, S ; Bassett, JK ; Bruinsma, FJ ; Hopper, J ; Jayasekara, H ; Joshua, D ; Macinnis, RJ ; Prince, HM ; Southey, MC ; Vajdic, CM ; van Leeuwen, MT ; Doo, NW ; Harrison, SJ ; English, DR ; Giles, GG ; Milne, RL (TAYLOR & FRANCIS LTD, 2023-10-03)
    BACKGROUND: While remaining incurable, median overall survival for MM now exceeds 5 years. Yet few studies have investigated how modifiable lifestyle factors influence survival. We investigate whether adiposity, diet, alcohol, or smoking are associated with MM-related fatality. RESEARCH DESIGN AND METHODS: We recruited 760 incident cases of MM via cancer registries in two Australian states during 2010-2016. Participants returned questionnaires on health and lifestyle. Follow-up ended in 2020. Flexible parametric survival models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for lifestyle exposures and risk of all-cause and MM-specific fatality. RESULTS: Higher pre-diagnosis Alternative Healthy Eating Index (AHEI) scores were associated with reduced MM-specific fatality (per 10-unit score, HR = 0.84, 95%CI = 0.70-0.99). Pre-diagnosis alcohol consumption was inversely associated with MM-specific fatality, compared with nondrinkers (0.1-20 g per day, HR = 0.59, 95%CI = 0.39-0.90; >20 g per day, HR = 0.67, 95%CI = 0.40-1.13). Tobacco smoking was associated with increased all-cause fatality compared with never smoking (former smokers: HR = 1.44, 95%CI = 1.10-1.88; current smokers: HR = 1.30, 95%CI = 0.80-2.10). There was no association between pre-enrollment body mass index (BMI) and MM-specific or all-cause fatality. CONCLUSIONS: Our findings support established recommendations for healthy diets and against smoking. Higher quality diet, as measured by the AHEI, may improve survival post diagnosis with MM.
  • Item
    No Preview Available
    Associations of height, body mass index, and weight gain with breast cancer risk in carriers of a pathogenic variant in BRCA1 or BRCA2: the BRCA1 and BRCA2 Cohort Consortium
    Kast, KM ; John, EL ; Hopper, J ; Andrieu, N ; Nogues, C ; Mouret-Fourme, E ; Lasset, C ; Fricker, J-P ; Berthet, P ; Mari, V ; Salle, LK ; Schmidt, M ; Ausems, MGEM ; Garcia, EBG ; van de Beek, IR ; Wevers, M ; Evans, DG ; Tischkowitz, M ; Lalloo, F ; Cook, J ; Izatt, L ; Tripathi, V ; Snape, K ; Musgrave, H ; Sharif, S ; Murray, JV ; Colonna, SV ; Andrulis, IL ; Daly, MB ; Southey, MC ; de la Hoya, M ; Osorio, A ; Foretova, L ; Berkova, D ; Gerdes, A-M ; Olah, E ; Jakubowska, A ; Singer, CF ; Tan, Y ; Augustinsson, A ; Rantala, J ; Simard, J ; Schmutzler, RK ; Milne, RL ; Phillips, K-A ; Terry, MB ; Goldgar, D ; van Leeuwen, FE ; Mooij, TM ; Antoniou, AC ; Easton, DF ; Rookus, MA ; Engel, C (BMC, 2023-06-20)
    INTRODUCTION: Height, body mass index (BMI), and weight gain are associated with breast cancer risk in the general population. It is unclear whether these associations also exist for carriers of pathogenic variants in the BRCA1 or BRCA2 genes. PATIENTS AND METHODS: An international pooled cohort of 8091 BRCA1/2 variant carriers was used for retrospective and prospective analyses separately for premenopausal and postmenopausal women. Cox regression was used to estimate breast cancer risk associations with height, BMI, and weight change. RESULTS: In the retrospective analysis, taller height was associated with risk of premenopausal breast cancer for BRCA2 variant carriers (HR 1.20 per 10 cm increase, 95% CI 1.04-1.38). Higher young-adult BMI was associated with lower premenopausal breast cancer risk for both BRCA1 (HR 0.75 per 5 kg/m2, 95% CI 0.66-0.84) and BRCA2 (HR 0.76, 95% CI 0.65-0.89) variant carriers in the retrospective analysis, with consistent, though not statistically significant, findings from the prospective analysis. In the prospective analysis, higher BMI and adult weight gain were associated with higher postmenopausal breast cancer risk for BRCA1 carriers (HR 1.20 per 5 kg/m2, 95% CI 1.02-1.42; and HR 1.10 per 5 kg weight gain, 95% CI 1.01-1.19, respectively). CONCLUSION: Anthropometric measures are associated with breast cancer risk for BRCA1 and BRCA2 variant carriers, with relative risk estimates that are generally consistent with those for women from the general population.
  • Item
    Thumbnail Image
    Large variation in radiation therapy fractionation for multiple myeloma in Australia
    Ong, WL ; MacManus, M ; Milne, RL ; Foroudi, F ; Millar, JL (WILEY, 2023-02)
    AIM: To evaluate the patterns of use of different radiation therapy (RT) fractionation for multiple myeloma (MM) bone disease. METHODS: This is a population-based cohort of patients with MM who had RT between 2012 and 2017 as captured in the statewide Victorian Radiotherapy Minimum Data Set in Australia. Data linkage was performed to identify subsets of RT delivered within 3 months of death. RT fractionation was classified into four groups: single-fraction (SFRT), 2-5, 6-10, and > 10 fractions. Changes in RT fractionation use over time were evaluated with the Cochran-Armitage test for trend. Factors associated with RT fractionation were evaluated using multivariate logistic regressions. RESULTS: Nine hundred and sixty-seven courses of RT were delivered in 623 patients. The proportion of SFRT, 2-5, 6-10 and > 10 fractions RT was 18%, 47%, 28%, and 7%, respectively. There was an increase in the use of 2-5 fractions, from 48% in 2012 to 60% in 2017 (p-trend < .001), with corresponding decrease in the use of 6-10 fractions, from 26% in 2012 to 20% in 2017 (p-trend = .003). Nine percent (40/430) of RT courses at private institutions were SFRT, compared to 25% (135/537) in public institutions (p < .001). In multivariate analyses, treatment in private institution was the strongest predictor of multifraction RT use. SFRT use was more common closer to the end of life-18%, 14%, and 33% of RT within 2-3, 1-2, < 1 month of death, respectively. CONCLUSION: There is increasing use of shorter course RT (2-5 fractions) for MM over time. SFRT use remains low, with large variation in practice.
  • Item
    Thumbnail Image
    Weight is More Informative than Body Mass Index for Predicting Postmenopausal Breast Cancer Risk: Prospective Family Study Cohort (ProF-SC)
    Ye, Z ; Li, S ; Dite, GS ; Nguyen, TL ; MacInnis, RJ ; Andrulis, IL ; Buys, SS ; Daly, MB ; John, EM ; Kurian, AW ; Genkinger, JM ; Chung, WK ; Phillips, K-A ; Thorne, H ; Winship, IM ; Milne, RL ; Dugue, P-A ; Southey, MC ; Giles, GG ; Terry, MB ; Hopper, JL (AMER ASSOC CANCER RESEARCH, 2022-03)
    UNLABELLED: We considered whether weight is more informative than body mass index (BMI) = weight/height2 when predicting breast cancer risk for postmenopausal women, and if the weight association differs by underlying familial risk. We studied 6,761 women postmenopausal at baseline with a wide range of familial risk from 2,364 families in the Prospective Family Study Cohort. Participants were followed for on average 11.45 years and there were 416 incident breast cancers. We used Cox regression to estimate risk associations with log-transformed weight and BMI after adjusting for underlying familial risk. We compared model fits using the Akaike information criterion (AIC) and nested models using the likelihood ratio test. The AIC for the weight-only model was 6.22 units lower than for the BMI-only model, and the log risk gradient was 23% greater. Adding BMI or height to weight did not improve fit (ΔAIC = 0.90 and 0.83, respectively; both P = 0.3). Conversely, adding weight to BMI or height gave better fits (ΔAIC = 5.32 and 11.64; P = 0.007 and 0.0002, respectively). Adding height improved only the BMI model (ΔAIC = 5.47; P = 0.006). There was no evidence that the BMI or weight associations differed by underlying familial risk (P > 0.2). Weight is more informative than BMI for predicting breast cancer risk, consistent with nonadipose as well as adipose tissue being etiologically relevant. The independent but multiplicative associations of weight and familial risk suggest that, in terms of absolute breast cancer risk, the association with weight is more important the greater a woman's underlying familial risk. PREVENTION RELEVANCE: Our results suggest that the relationship between BMI and breast cancer could be due to a relationship between weight and breast cancer, downgraded by inappropriately adjusting for height; potential importance of anthropometric measures other than total body fat; breast cancer risk associations with BMI and weight are across a continuum.
  • Item
    Thumbnail Image
    Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci
    DeVries, AA ; Dennis, J ; Tyrer, JP ; Peng, P-C ; Coetzee, SG ; Reyes, AL ; Plummer, JT ; Davis, BD ; Chen, SS ; Dezem, FS ; Aben, KKH ; Anton-Culver, H ; Antonenkova, NN ; Beckmann, MW ; Beeghly-Fadiel, A ; Berchuck, A ; Bogdanova, N ; Bogdanova-Markov, N ; Brenton, JD ; Butzow, R ; Campbell, I ; Chang-Claude, J ; Chenevix-Trench, G ; Cook, LS ; DeFazio, A ; Doherty, JA ; Dork, T ; Eccles, DM ; Eliassen, AH ; Fasching, PA ; Fortner, RT ; Giles, GG ; Goode, EL ; Goodman, MT ; Gronwald, J ; Hakansson, N ; Hildebrandt, MAT ; Huff, C ; Huntsman, DG ; Jensen, A ; Kar, S ; Karlan, BY ; Khusnutdinova, EK ; Kiemeney, LA ; Kjaer, SK ; Kupryjanczyk, J ; Labrie, M ; Lambrechts, D ; Le, ND ; Lubinski, J ; May, T ; Menon, U ; Milne, RL ; Modugno, F ; Monteiro, AN ; Moysich, KB ; Odunsi, K ; Olsson, H ; Pearce, CL ; Pejovic, T ; Ramus, SJ ; Riboli, E ; Riggan, MJ ; Romieu, I ; Sandler, DP ; Schildkraut, JM ; Setiawan, VW ; Sieh, W ; Song, H ; Sutphen, R ; Terry, KL ; Thompson, PJ ; Titus, L ; Tworoger, SS ; Van Nieuwenhuysen, E ; Edwards, DV ; Webb, PM ; Wentzensen, N ; Whittemore, AS ; Wolk, A ; Wu, AH ; Ziogas, A ; Freedman, ML ; Lawrenson, K ; Pharoah, PDP ; Easton, DF ; Gayther, SA ; Jones, MR (OXFORD UNIV PRESS INC, 2022-11)
    BACKGROUND: Known risk alleles for epithelial ovarian cancer (EOC) account for approximately 40% of the heritability for EOC. Copy number variants (CNVs) have not been investigated as EOC risk alleles in a large population cohort. METHODS: Single nucleotide polymorphism array data from 13 071 EOC cases and 17 306 controls of White European ancestry were used to identify CNVs associated with EOC risk using a rare admixture maximum likelihood test for gene burden and a by-probe ratio test. We performed enrichment analysis of CNVs at known EOC risk loci and functional biofeatures in ovarian cancer-related cell types. RESULTS: We identified statistically significant risk associations with CNVs at known EOC risk genes; BRCA1 (PEOC = 1.60E-21; OREOC = 8.24), RAD51C (Phigh-grade serous ovarian cancer [HGSOC] = 5.5E-4; odds ratio [OR]HGSOC = 5.74 del), and BRCA2 (PHGSOC = 7.0E-4; ORHGSOC = 3.31 deletion). Four suggestive associations (P < .001) were identified for rare CNVs. Risk-associated CNVs were enriched (P < .05) at known EOC risk loci identified by genome-wide association study. Noncoding CNVs were enriched in active promoters and insulators in EOC-related cell types. CONCLUSIONS: CNVs in BRCA1 have been previously reported in smaller studies, but their observed frequency in this large population-based cohort, along with the CNVs observed at BRCA2 and RAD51C gene loci in EOC cases, suggests that these CNVs are potentially pathogenic and may contribute to the spectrum of disease-causing mutations in these genes. CNVs are likely to occur in a wider set of susceptibility regions, with potential implications for clinical genetic testing and disease prevention.
  • Item
    Thumbnail Image
    Variations in whole brain radiation therapy fractionation for brain metastases in Victoria
    Chee, LYS ; Sia, J ; Milne, RL ; Foroudi, F ; Millar, JL ; Ong, WL (WILEY, 2022-12)
    INTRODUCTION: We aim to evaluate the use of different whole brain radiation therapy (WBRT) fractionation schedules for brain metastases (BM) in Victoria, and the factors associated with it. METHODS: This is a population-based cohort of patients who received radiation therapy for BM between 2012 and 2017, as captured in the Victorian Radiotherapy Minimum Dataset. We excluded patients with primary brain tumour and those who had 'prophylactic' intent treatment. The Cochran-Armitage test was used to evaluate changing trend in WBRT fractionation. Multivariate multinomial logistic regressions were used to evaluate factors associated with WBRT fractionation. RESULTS: Of the 3111 patients who had WBRT, 1048 (45%), 1291 (42%) and 312 (13%) had ≤5, 6-10 and >10 fractions WBRT respectively. There was progressive increase in ≤5 fractions WBRT use over time, from 37% in 2012 to 50% in 2017 (P-trend < 0.001). In multivariate analyses, increasing age, patients with gastrointestinal cancer, patients living in remote/regional areas and more recent treatment were associated with the use of shorter WBRT fractionation (≤5 fractions), while patients who had WBRT plus stereotactic radiosurgery, and those treated in private institutions were associated with the use of prolonged WBRT fractionation (≥6 fractions). Three hundred eighty-nine (13%) patients died within 30 days of WBRT, of which 241 (64%), 119 (32%) and 17 (5%) had ≤5, 6-10 and > 10 fractions WBRT respectively. CONCLUSION: We observed large variations in WBRT fractionation that are associated with patient, tumour, treatment and institutional factors. It is important to continuously monitor and benchmark our practice in order to reduce potentially unwarranted variations.
  • Item
    Thumbnail Image
    Polygenic risk modeling for prediction of epithelial ovarian cancer risk (vol 30, pg 349, 2021)
    Dareng, EO ; Tyrer, JP ; Barnes, DR ; Jones, MR ; Yang, X ; Aben, KKH ; Adank, MA ; Agata, S ; Andrulis, IL ; Anton-Culver, H ; Antonenkova, NN ; Aravantinos, G ; Arun, BK ; Augustinsson, A ; Balmana, J ; Bandera, EV ; Barkardottir, RB ; Barrowdale, D ; Beckmann, MW ; Beeghly-Fadiel, A ; Benitez, J ; Bermisheva, M ; Bernardini, MQ ; Bjorge, L ; Black, A ; Bogdanova, NV ; Bonanni, B ; Borg, A ; Brenton, JD ; Budzilowska, A ; Butzow, R ; Buys, SS ; Cai, H ; Caligo, MA ; Campbell, I ; Cannioto, R ; Cassingham, H ; Chang-Claude, J ; Chanock, SJ ; Chen, K ; Chiew, Y-E ; Chung, WK ; Claes, KBM ; Colonna, S ; Cook, LS ; Couch, FJ ; Daly, MB ; Dao, F ; Davies, E ; de la Hoya, M ; de Putter, R ; Dennis, J ; DePersia, A ; Devilee, P ; Diez, O ; Ding, YC ; Doherty, JA ; Domchek, SM ; Dork, T ; du Bois, A ; Durst, M ; Eccles, DM ; Eliassen, HA ; Engel, C ; Evans, GD ; Fasching, PA ; Flanagan, JM ; Fortner, RT ; Machackova, E ; Friedman, E ; Ganz, PA ; Garber, J ; Gensini, F ; Giles, GG ; Glendon, G ; Godwin, AK ; Goodman, MT ; Greene, MH ; Gronwald, J ; Hahnen, E ; Haiman, CA ; Hakansson, N ; Hamann, U ; Hansen, TVO ; Harris, HR ; Hartman, M ; Heitz, F ; Hildebrandt, MAT ; Hogdall, E ; Hogdall, CK ; Hopper, JL ; Huang, R-Y ; Huff, C ; Hulick, PJ ; Huntsman, DG ; Imyanitov, EN ; Isaacs, C ; Jakubowska, A ; James, PA ; Janavicius, R ; Jensen, A ; Johannsson, OT ; John, EM ; Jones, ME ; Kang, D ; Karlan, BY ; Karnezis, A ; Kelemen, LE ; Khusnutdinova, E ; Kiemeney, LA ; Kim, B-G ; Kjaer, SK ; Komenaka, I ; Kupryjanczyk, J ; Kurian, AW ; Kwong, A ; Lambrechts, D ; Larson, MC ; Lazaro, C ; Le, ND ; Leslie, G ; Lester, J ; Lesueur, F ; Levine, DA ; Li, L ; Li, J ; Loud, JT ; Lu, KH ; Lubinski, J ; Mai, PL ; Manoukian, S ; Marks, JR ; Matsuno, RK ; Matsuo, K ; May, T ; McGuffog, L ; McLaughlin, JR ; McNeish, IA ; Mebirouk, N ; Menon, U ; Miller, A ; Milne, RL ; Minlikeeva, A ; Modugno, F ; Montagna, M ; Moysich, KB ; Munro, E ; Nathanson, KL ; Neuhausen, SL ; Nevanlinna, H ; Yie, JNY ; Nielsen, HR ; Nielsen, FC ; Nikitina-Zake, L ; Odunsi, K ; Offit, K ; Olah, E ; Olbrecht, S ; Olopade, OI ; Olson, SH ; Olsson, H ; Osorio, A ; Papi, L ; Park, SK ; Parsons, MT ; Pathak, H ; Pedersen, IS ; Peixoto, A ; Pejovic, T ; Perez-Segura, P ; Permuth, JB ; Peshkin, B ; Peterlongo, P ; Piskorz, A ; Prokofyeva, D ; Radice, P ; Rantala, J ; Riggan, MJ ; Risch, HA ; Rodriguez-Antona, C ; Ross, E ; Rossing, MA ; Runnebaum, I ; Sandler, DP ; Santamarina, M ; Soucy, P ; Schmutzler, RK ; Setiawan, VW ; Shan, K ; Sieh, W ; Simard, J ; Singer, CF ; Sokolenko, AP ; Song, H ; Southey, MC ; Steed, H ; Stoppa-Lyonnet, D ; Sutphen, R ; Swerdlow, AJ ; Tan, YY ; Teixeira, MR ; Teo, SH ; Terry, KL ; Terry, MB ; Thomassen, M ; Thompson, PJ ; Thomsen, LCV ; Thull, DL ; Tischkowitz, M ; Titus, L ; Toland, AE ; Torres, D ; Trabert, B ; Travis, R ; Tung, N ; Tworoger, SS ; Valen, E ; van Altena, AM ; van der Hout, AH ; Van Nieuwenhuysen, E ; van Rensburg, EJ ; Vega, A ; Edwards, DV ; Vierkant, RA ; Wang, F ; Wappenschmidt, B ; Webb, PM ; Weinberg, CR ; Weitzel, JN ; Wentzensen, N ; White, E ; Whittemore, AS ; Winham, SJ ; Wolk, A ; Woo, Y-L ; Wu, AH ; Yan, L ; Yannoukakos, D ; Zavaglia, KM ; Zheng, W ; Ziogas, A ; Zorn, KK ; Kleibl, Z ; Easton, D ; Lawrenson, K ; DeFazio, A ; Sellers, TA ; Ramus, SJ ; Pearce, CL ; Monteiro, AN ; Cunningham, JM ; Goode, EL ; Schildkraut, JM ; Berchuck, A ; Chenevix-Trench, G ; Gayther, SA ; Antoniou, AC ; Pharoah, PDP (SPRINGERNATURE, 2022-05)
  • Item
    Thumbnail Image
    Disparities in radiation therapy utilization for cancer patients in Victoria
    Ong, WL ; Finn, N ; Te Marvelde, L ; Hornby, C ; Milne, RL ; Hanna, GG ; Pitson, G ; Elsaleh, H ; Millar, JL ; Foroudi, F (WILEY, 2022-09)
    INTRODUCTION: To evaluate the proportion of cancer patients who received radiation therapy (RT) within 12 months of cancer diagnosis (RTU12) and identify factors associated with RTU12. METHODS: This is a population-based cohort of individuals with incident cancer, diagnosed between 2013 and 2017 in Victoria. Data linkages were performed between the Victorian Cancer Registry and Victorian Radiotherapy Minimum Dataset. The primary outcome was the proportion of patients who had RTU12. For the three most common cancers (i.e., prostate, breast and lung cancer), the time trend in RTU12 and factors associated with RTU12 were evaluated. RESULTS: The overall RTU12 in our study cohort was 26-20% radical RT and 6% palliative RT. Of the 21,735 men with prostate cancer, RTU12 was 17%, with no significant change over time (P-trend = 0.53). In multivariate analyses, increasing age and lower socioeconomic status were independently associated with higher RTU12 for prostate cancer. Of the 20,883 women with breast cancer, RTU12 was 64%, which increased from 62% in 2013 to 65% in 2017 (P-trend < 0.05). In multivariate analyses, age, socioeconomic status and area of residency were independently associated with RTU12 for breast cancer. Of the 13,093 patients with lung cancer, RTU12 was 42%, with no significant change over time (P-trend = 0.16). In multivariate analyses, younger age, male and lower socioeconomic status were independently associated with higher RTU12. CONCLUSION: In this large population-based state-wide cohort of cancer patients, only 1 in 4 had RT within 12 months of diagnosis. There were marked sociodemographic disparities in RTU12 for prostate, breast and lung cancer patients.
  • Item
    Thumbnail Image
    Polygenic risk modeling for prediction of epithelial ovarian cancer risk
    Dareng, EO ; Tyrer, JP ; Barnes, DR ; Jones, MR ; Yang, X ; Aben, KKH ; Adank, MA ; Agata, S ; Andrulis, IL ; Anton-Culver, H ; Antonenkova, NN ; Aravantinos, G ; Arun, BK ; Augustinsson, A ; Balmana, J ; Bandera, E ; Barkardottir, RB ; Barrowdale, D ; Beckmann, MW ; Beeghly-Fadiel, A ; Benitez, J ; Bermisheva, M ; Bernardini, MQ ; Bjorge, L ; Black, A ; Bogdanova, N ; Bonanni, B ; Borg, A ; Brenton, JD ; Budzilowska, A ; Butzow, R ; Buys, SS ; Cai, H ; Caligo, MA ; Campbell, I ; Cannioto, R ; Cassingham, H ; Chang-Claude, J ; Chanock, SJ ; Chen, K ; Chiew, Y-E ; Chung, WK ; Claes, KBM ; Colonna, S ; Cook, LS ; Couch, FJ ; Daly, MB ; Dao, F ; Davies, E ; de la Hoya, M ; de Putter, R ; Dennis, J ; DePersia, A ; Devilee, P ; Diez, O ; Ding, YC ; Doherty, JA ; Domchek, SM ; Dork, T ; du Bois, A ; Durst, M ; Eccles, DM ; Eliassen, HA ; Engel, C ; Evans, GD ; Fasching, PA ; Flanagan, JM ; Fortner, R ; Machackova, E ; Friedman, E ; Ganz, PA ; Garber, J ; Gensini, F ; Giles, GG ; Glendon, G ; Godwin, AK ; Goodman, MT ; Greene, MH ; Gronwald, J ; Group, OS ; AOCSGroup, ; Hahnen, E ; Haiman, CA ; Hakansson, N ; Hamann, U ; Hansen, TVO ; Harris, HR ; Hartman, M ; Heitz, F ; Hildebrandt, MAT ; Hogdall, E ; Hogdall, CK ; Hopper, JL ; Huang, R-Y ; Huff, C ; Hulick, PJ ; Huntsman, DG ; Imyanitov, EN ; Isaacs, C ; Jakubowska, A ; James, PA ; Janavicius, R ; Jensen, A ; Johannsson, OT ; John, EM ; Jones, ME ; Kang, D ; Karlan, BY ; Karnezis, A ; Kelemen, LE ; Khusnutdinova, E ; Kiemeney, LA ; Kim, B-G ; Kjaer, SK ; Komenaka, I ; Kupryjanczyk, J ; Kurian, AW ; Kwong, A ; Lambrechts, D ; Larson, MC ; Lazaro, C ; Le, ND ; Leslie, G ; Lester, J ; Lesueur, F ; Levine, DA ; Li, L ; Li, J ; Loud, JT ; Lu, KH ; Mai, PL ; Manoukian, S ; Marks, JR ; KimMatsuno, R ; Matsuo, K ; May, T ; McGuffog, L ; McLaughlin, JR ; McNeish, IA ; Mebirouk, N ; Menon, U ; Miller, A ; Milne, RL ; Minlikeeva, A ; Modugno, F ; Montagna, M ; Moysich, KB ; Munro, E ; Nathanson, KL ; Neuhausen, SL ; Nevanlinna, H ; Yie, JNY ; Nielsen, HR ; Nielsen, FC ; Nikitina-Zake, L ; Odunsi, K ; Offit, K ; Olah, E ; Olbrecht, S ; Olopade, O ; Olson, SH ; Olsson, H ; Osorio, A ; Papi, L ; Park, SK ; Parsons, MT ; Pathak, H ; Pedersen, IS ; Peixoto, A ; Pejovic, T ; Perez-Segura, P ; Permuth, JB ; Peshkin, B ; Peterlongo, P ; Piskorz, A ; Prokofyeva, D ; Radice, P ; Rantala, J ; Riggan, MJ ; Risch, HA ; Rodriguez-Antona, C ; Ross, E ; Rossing, MA ; Runnebaum, I ; Sandler, DP ; Santamarina, M ; Soucy, P ; Schmutzler, RK ; Setiawan, VW ; Shan, K ; Sieh, W ; Simard, J ; Singer, CF ; Sokolenko, AP ; Song, H ; Southey, MC ; Steed, H ; Stoppa-Lyonnet, D ; Sutphen, R ; Swerdlow, AJ ; Tan, YY ; Teixeira, MR ; Teo, SH ; Terry, KL ; BethTerry, M ; Thomassen, M ; Thompson, PJ ; Thomsen, LCV ; Thull, DL ; Tischkowitz, M ; Titus, L ; Toland, AE ; Torres, D ; Trabert, B ; Travis, R ; Tung, N ; Tworoger, SS ; Valen, E ; van Altena, AM ; van der Hout, AH ; Nieuwenhuysen, E ; van Rensburg, EJ ; Vega, A ; Edwards, DV ; Vierkant, RA ; Wang, F ; Wappenschmidt, B ; Webb, PM ; Weinberg, CR ; Weitzel, JN ; Wentzensen, N ; White, E ; Whittemore, AS ; Winham, SJ ; Wolk, A ; Woo, Y-L ; Wu, AH ; Yan, L ; Yannoukakos, D ; Zavaglia, KM ; Zheng, W ; Ziogas, A ; Zorn, KK ; Kleibl, Z ; Easton, D ; Lawrenson, K ; DeFazio, A ; Sellers, TA ; Ramus, SJ ; Pearce, CL ; Monteiro, AN ; Cunningham, J ; Goode, EL ; Schildkraut, JM ; Berchuck, A ; Chenevix-Trench, G ; Gayther, SA ; Antoniou, AC ; Pharoah, PDP (SPRINGERNATURE, 2022-03)
    Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, "select and shrink for summary statistics" (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38 (95% CI: 1.28-1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08-1.19, AUC: 0.538) in women of East Asian ancestries; 1.38 (95% CI: 1.21-1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI: 1.29-1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35-1.64, AUC: 0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.
  • Item
    Thumbnail Image
    Common variants in breast cancer risk loci predispose to distinct tumor subtypes
    Ahearn, TU ; Zhang, H ; Michailidou, K ; Milne, RL ; Bolla, MK ; Dennis, J ; Dunning, AM ; Lush, M ; Wang, Q ; Andrulis, IL ; Anton-Culver, H ; Arndt, V ; Aronson, KJ ; Auer, PL ; Augustinsson, A ; Baten, A ; Becher, H ; Behrens, S ; Benitez, J ; Bermisheva, M ; Blomqvist, C ; Bojesen, SE ; Bonanni, B ; Borresen-Dale, A-L ; Brauch, H ; Brenner, H ; Brooks-Wilson, A ; Bruening, T ; Burwinkel, B ; Buys, SS ; Canzian, F ; Castelao, JE ; Chang-Claude, J ; Chanock, SJ ; Chenevix-Trench, G ; Clarke, CL ; Collee, JM ; Cox, A ; Cross, SS ; Czene, K ; Daly, MB ; Devilee, P ; Dork, T ; Dwek, M ; Eccles, DM ; Evans, DG ; Fasching, PA ; Figueroa, J ; Floris, G ; Gago-Dominguez, M ; Gapstur, SM ; Garcia-Saenz, JA ; Gaudet, MM ; Giles, GG ; Goldberg, MS ; Gonzalez-Neira, A ; Alnaes, GIG ; Grip, M ; Guenel, P ; Haiman, CA ; Hall, P ; Hamann, U ; Harkness, EF ; Heemskerk-Gerritsen, BAM ; Holleczek, B ; Hollestelle, A ; Hooning, MJ ; Hoover, RN ; Hopper, JL ; Howell, A ; Jakimovska, M ; Jakubowska, A ; John, EM ; Jones, ME ; Jung, A ; Kaaks, R ; Kauppila, S ; Keeman, R ; Khusnutdinova, E ; Kitahara, CM ; Ko, Y-D ; Koutros, S ; Kristensen, VN ; Kruger, U ; Kubelka-Sabit, K ; Kurian, AW ; Kyriacou, K ; Lambrechts, D ; Lee, DG ; Lindblom, A ; Linet, M ; Lissowska, J ; Llaneza, A ; Lo, W-Y ; MacInnis, RJ ; Mannermaa, A ; Manoochehri, M ; Margolin, S ; Martinez, ME ; McLean, C ; Meindl, A ; Menon, U ; Nevanlinna, H ; Newman, WG ; Nodora, J ; Offit, K ; Olsson, H ; Orr, N ; Park-Simon, T-W ; Patel, A ; Peto, J ; Pita, G ; Plaseska-Karanfilska, D ; Prentice, R ; Punie, K ; Pylkas, K ; Radice, P ; Rennert, G ; Romero, A ; Ruediger, T ; Saloustros, E ; Sampson, S ; Sandler, DP ; Sawyer, EJ ; Schmutzler, RK ; Schoemaker, MJ ; Schottker, B ; Sherman, ME ; Shu, X-O ; Smichkoska, S ; Southey, MC ; Spinelli, JJ ; Swerdlow, AJ ; Tamimi, RM ; Tapper, WJ ; Taylor, JA ; Teras, LR ; Terry, MB ; Torres, D ; Troester, MA ; Vachon, CM ; van Deurzen, CHM ; van Veen, EM ; Wagner, P ; Weinberg, CR ; Wendt, C ; Wesseling, J ; Winqvist, R ; Wolk, A ; Yang, XR ; Zheng, W ; Couch, FJ ; Simard, J ; Kraft, P ; Easton, DF ; Pharoah, PDP ; Schmidt, MK ; Garcia-Closas, M ; Chatterjee, N (BMC, 2022-01-04)
    BACKGROUND: Genome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER) status, but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear. METHODS: Among 106,571 invasive breast cancer cases and 95,762 controls of European ancestry with data on 173 breast cancer variants identified in previous GWAS, we used novel two-stage polytomous logistic regression models to evaluate variants in relation to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes. RESULTS: Eighty-five of 173 variants were associated with at least one tumor feature (false discovery rate < 5%), most commonly ER and grade, followed by PR and HER2. Models for intrinsic-like subtypes found nearly all of these variants (83 of 85) associated at p < 0.05 with risk for at least one luminal-like subtype, and approximately half (41 of 85) of the variants were associated with risk of at least one non-luminal subtype, including 32 variants associated with triple-negative (TN) disease. Ten variants were associated with risk of all subtypes in different magnitude. Five variants were associated with risk of luminal A-like and TN subtypes in opposite directions. CONCLUSION: This report demonstrates a high level of complexity in the etiology heterogeneity of breast cancer susceptibility variants and can inform investigations of subtype-specific risk prediction.