Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Rapid detection of carriers with BRCA1 and BRCA2 mutations using high resolution melting analysis
    Takano, EA ; Mitchell, G ; Fox, SB ; Dobrovic, A (BIOMED CENTRAL LTD, 2008-02-25)
    BACKGROUND: Germline inactivating mutations in BRCA1 and BRCA2 underlie a major proportion of the inherited predisposition to breast and ovarian cancer. These mutations are usually detected by DNA sequencing. Cost-effective and rapid methods to screen for these mutations would enable the extension of mutation testing to a broader population. High resolution melting (HRM) analysis is a rapid screening methodology with very low false negative rates. We therefore evaluated the use of HRM as a mutation scanning tool using, as a proof of principle, the three recurrent BRCA1 and BRCA2 founder mutations in the Ashkenazi Jewish population in addition to other mutations that occur in the same regions. METHODS: We designed PCR amplicons for HRM scanning of BRCA1 exons 2 and 20 (carrying the founder mutations185delAG and 5382insC respectively) and the part of the BRCA2 exon 11 carrying the 6174delT founder mutation. The analysis was performed on an HRM-enabled real time PCR machine. RESULTS: We tested DNA from the peripheral blood of 29 individuals heterozygous for known mutations. All the Ashkenazi founder mutations were readily identified. Other mutations in each region that were also readily detected included the recently identified Greek founder mutation 5331G>A in exon 20 of BRCA1. Each mutation had a reproducible melting profile. CONCLUSION: HRM is a simple and rapid scanning method for known and unknown BRCA1 and BRCA2 germline mutations that can dramatically reduce the amount of sequencing required and reduce the turnaround time for mutation screening and testing. In some cases, such as tracking mutations through pedigrees, sequencing may only be necessary to confirm positive results. This methodology will allow for the economical screening of founder mutations not only in people of Ashkenazi Jewish ancestry but also in other populations with founder mutations such as Central and Eastern Europeans (BRCA1 5382insC) and Greek Europeans (BRCA1 5331G>A).
  • Item
    Thumbnail Image
    Nipple aspiration and ductal lavage in women with a germline BRCA1 or BRCA2 mutation
    Mitchell, G ; Antill, YC ; Murray, W ; Kirk, J ; Salisbury, E ; Lindeman, GJ ; Di Iulio, J ; Milner, AD ; Devereaux, L ; Phillips, KA (BIOMED CENTRAL LTD, 2005)
    INTRODUCTION: The aim of this study was to collect serial samples of nipple aspirate (NA) and ductal lavage (DL) fluid from women with germline BRCA1/2 mutations in order to create a biorepository for use in identifying biomarkers of breast cancer risk. METHODS: Between March 2003 and February 2005, 52 women with germline BRCA1 or BRCA2 mutations (median age 43 years, range 27 to 65 years) were scheduled for six-monthly NA, DL and venesection. DL was attempted for all NA fluid-yielding (FY) and any non-FY ducts that could be located at each visit. RESULTS: Twenty-seven (52%) women were postmenopausal, predominantly (19/27) from risk reducing bilateral salpingo-oophorectomy (BSO). FY ducts were identified in 60% of all women, 76% of premenopausal women versus 44% of postmenopausal (P = 0.026). Eighty-five percent of women had successful DL. Success was most likely in women with FY ducts (FY 94% versus non-FY 71% (P = 0.049). DL samples were more likely to be cellular if collected from FY ducts (FY 68% versus non-FY 43%; P = 0.037). Total cell counts were associated with FY status (FY median cell count 30,996, range 0 to >1,000,000 versus non-FY median cell count 0, range 0 to 173,577; P = 0.002). Four women (8%) had ducts with severe atypia with or without additional ducts with mild epithelial atypia; seven others had ducts with mild atypia alone (11/52 (21%) in total). Median total cell count was greater from ducts with atypia (105,870, range 1920 to >1,000,000) than those with no atypia (174, 0 to >1,000,000; P