Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 16
  • Item
    Thumbnail Image
    Adaptive translational reprogramming of metabolism limits the response to targeted therapy in BRAFV600 melanoma
    Smith, LK ; Parmenter, T ; Kleinschmidt, M ; Kusnadi, EP ; Kang, J ; Martin, CA ; Lau, P ; Patel, R ; Lorent, J ; Papadopoli, D ; Trigos, A ; Ward, T ; Rao, AD ; Lelliott, EJ ; Sheppard, KE ; Goode, D ; Hicks, RJ ; Tiganis, T ; Simpson, KJ ; Larsson, O ; Blythe, B ; Cullinane, C ; Wickramasinghe, VO ; Pearson, RB ; McArthur, GA (NATURE PORTFOLIO, 2022-03-01)
    Despite the success of therapies targeting oncogenes in cancer, clinical outcomes are limited by residual disease that ultimately results in relapse. This residual disease is often characterized by non-genetic adaptive resistance, that in melanoma is characterised by altered metabolism. Here, we examine how targeted therapy reprograms metabolism in BRAF-mutant melanoma cells using a genome-wide RNA interference (RNAi) screen and global gene expression profiling. Using this systematic approach we demonstrate post-transcriptional regulation of metabolism following BRAF inhibition, involving selective mRNA transport and translation. As proof of concept we demonstrate the RNA processing kinase U2AF homology motif kinase 1 (UHMK1) associates with mRNAs encoding metabolism proteins and selectively controls their transport and translation during adaptation to BRAF-targeted therapy. UHMK1 inactivation induces cell death by disrupting therapy induced metabolic reprogramming, and importantly, delays resistance to BRAF and MEK combination therapy in multiple in vivo models. We propose selective mRNA processing and translation by UHMK1 constitutes a mechanism of non-genetic resistance to targeted therapy in melanoma by controlling metabolic plasticity induced by therapy.
  • Item
    Thumbnail Image
    Palbociclib synergizes with BRAF and MEK inhibitors in treatment naive melanoma but not after the development of BRAF inhibitor resistance
    Martin, CA ; Cullinane, C ; Kirby, L ; Abuhammad, S ; Lelliott, EJ ; Waldeck, K ; Young, RJ ; Brajanovski, N ; Cameron, DP ; Walker, R ; Sanij, E ; Poortinga, G ; Hannan, RD ; Pearson, RB ; Hicks, RJ ; McArthur, GA ; Sheppard, KE (WILEY, 2018-05-15)
    Increased CDK4 activity occurs in the majority of melanomas and CDK4/6 inhibitors in combination with BRAF and MEK inhibitors are currently in clinical trials for the treatment of melanoma. We hypothesize that the timing of the addition of CDK4/6 inhibitors to the current BRAF and MEK inhibitor regime will impact on the efficacy of this triplet drug combination. The efficacy of BRAF, MEK and CDK4/6 inhibitors as single agents and in combination was assessed in human BRAF mutant cell lines that were treatment naïve, BRAF inhibitor tolerant or had acquired resistance to BRAF inhibitors. Xenograft studies were then performed to test the in vivo efficacy of the BRAF and CDK4/6 inhibitor combination. Melanoma cells that had developed early reversible tolerance or acquired resistance to BRAF inhibition remained sensitive to palbociclib. In drug-tolerant cells, the efficacy of the combination of palbociclib with BRAF and/or MEK inhibitors was equivalent to single agent palbociclib. Similarly, acquired BRAF inhibitor resistance cells lost efficacy to the palbociclib and BRAF combination. In contrast, upfront treatment of melanoma cells with palbociclib in combination with BRAF and/or MEK inhibitors induced either cell death or senescence and was superior to a BRAF plus MEK inhibitor combination. In vivo palbociclib plus BRAF inhibitor induced rapid and sustained tumor regression without the development of therapy resistance. In summary, upfront dual targeting of CDK4/6 and mutant BRAF signaling enables tumor cells to evade resistance to monotherapy and is required for robust and sustained tumor regression. Melanoma patients whose tumors have acquired resistance to BRAF inhibition are less likely to have favorable responses to subsequent treatment with the triplet combination of BRAF, MEK and CDK4/6 inhibitors.
  • Item
    No Preview Available
    AKT-independent PI3-K signaling in cancer - emerging role for SGK3.
    Bruhn, MA ; Pearson, RB ; Hannan, RD ; Sheppard, KE (Informa UK Limited, 2013)
    The phosphoinositide 3-kinase (PI3-K) signaling pathway plays an important role in a wide variety of fundamental cellular processes, largely mediated via protein kinase B/v-akt murine thymoma viral oncogene homolog (PKB/AKT) signaling. Given the crucial role of PI3-K/AKT signaling in regulating processes such as cell growth, proliferation, and survival, it is not surprising that components of this pathway are frequently dysregulated in cancer, making the AKT kinase family members important therapeutic targets. The large number of clinical trials currently evaluating PI3-K pathway inhibitors as a therapeutic strategy further emphasizes this. The serum- and glucocorticoid-inducible protein kinase (SGK) family is made up of three isoforms, SGK1, 2, and 3, that are PI3-K-dependent, serine/threonine kinases, with similar substrate specificity to AKT. Consequently, the SGK family also regulates similar cell processes to the AKT kinases, including cell proliferation and survival. Importantly, there is emerging evidence demonstrating that SGK3 plays a critical role in AKT-independent oncogenic signaling. This review will focus on the role of SGK3 as a key effector of AKT-independent PI3-K oncogenic signaling.
  • Item
    Thumbnail Image
    Deregulation of MYCN, LIN28B and LET7 in a Molecular Subtype of Aggressive High-Grade Serous Ovarian Cancers
    Helland, A ; Anglesio, MS ; George, J ; Cowin, PA ; Johnstone, CN ; House, CM ; Sheppard, KE ; Etemadmoghadam, D ; Melnyk, N ; Rustgi, AK ; Phillips, WA ; Johnsen, H ; Holm, R ; Kristensen, GB ; Birrer, MJ ; Pearson, RB ; Borresen-Dale, A-L ; Huntsman, DG ; deFazio, A ; Creighton, CJ ; Smyth, GK ; Bowtell, DDL ; Tan, P (PUBLIC LIBRARY SCIENCE, 2011-04-13)
    Molecular subtypes of serous ovarian cancer have been recently described. Using data from independent datasets including over 900 primary tumour samples, we show that deregulation of the Let-7 pathway is specifically associated with the C5 molecular subtype of serous ovarian cancer. DNA copy number and gene expression of HMGA2, alleles of Let-7, LIN28, LIN28B, MYC, MYCN, DICER1, and RNASEN were measured using microarray and quantitative reverse transcriptase PCR. Immunohistochemistry was performed on 127 samples using tissue microarrays and anti-HMGA2 antibodies. Fluorescence in situ hybridisation of bacterial artificial chromosomes hybridized to 239 ovarian tumours was used to measure translocation at the LIN28B locus. Short interfering RNA knockdown in ovarian cell lines was used to test the functionality of associations observed. Four molecular subtypes (C1, C2, C4, C5) of high-grade serous ovarian cancers were robustly represented in each dataset and showed similar pattern of patient survival. We found highly specific activation of a pathway involving MYCN, LIN28B, Let-7 and HMGA2 in the C5 molecular subtype defined by MYCN amplification and over-expression, over-expression of MYCN targets including the Let-7 repressor LIN28B, loss of Let-7 expression and HMGA2 amplification and over-expression. DICER1, a known Let-7 target, and RNASEN were over-expressed in C5 tumours. We saw no evidence of translocation at the LIN28B locus in C5 tumours. The reported interaction between LIN28B and Let-7 was recapitulated by siRNA knockdown in ovarian cancer cell lines. Our results associate deregulation of MYCN and downstream targets, including Let-7 and oncofetal genes, with serous ovarian cancer. We define for the first time how elements of an oncogenic pathway, involving multiple genes that contribute to stem cell renewal, is specifically altered in a molecular subtype of serous ovarian cancer. By defining the drivers of a molecular subtype of serous ovarian cancers we provide a novel strategy for targeted therapeutic intervention.
  • Item
    Thumbnail Image
    The RNA polymerase I transcription inhibitor CX-5461 cooperates with topoisomerase 1 inhibition by enhancing the DNA damage response in homologous recombination-proficient high-grade serous ovarian cancer
    Yan, S ; Xuan, J ; Brajanovski, N ; Tancock, MRC ; Madhamshettiwar, PB ; Simpson, KJ ; Ellis, S ; Kang, J ; Cullinane, C ; Sheppard, KE ; Hannan, KM ; Hannan, RD ; Sanij, E ; Pearson, RB ; Chan, KT (SPRINGERNATURE, 2021-02-02)
    BACKGROUND: Intrinsic and acquired drug resistance represent fundamental barriers to the cure of high-grade serous ovarian carcinoma (HGSC), the most common histological subtype accounting for the majority of ovarian cancer deaths. Defects in homologous recombination (HR) DNA repair are key determinants of sensitivity to chemotherapy and poly-ADP ribose polymerase inhibitors. Restoration of HR is a common mechanism of acquired resistance that results in patient mortality, highlighting the need to identify new therapies targeting HR-proficient disease. We have shown promise for CX-5461, a cancer therapeutic in early phase clinical trials, in treating HR-deficient HGSC. METHODS: Herein, we screen the whole protein-coding genome to identify potential targets whose depletion cooperates with CX-5461 in HR-proficient HGSC. RESULTS: We demonstrate robust proliferation inhibition in cells depleted of DNA topoisomerase 1 (TOP1). Combining the clinically used TOP1 inhibitor topotecan with CX-5461 potentiates a G2/M cell cycle checkpoint arrest in multiple HR-proficient HGSC cell lines. The combination enhances a nucleolar DNA damage response and global replication stress without increasing DNA strand breakage, significantly reducing clonogenic survival and tumour growth in vivo. CONCLUSIONS: Our findings highlight the possibility of exploiting TOP1 inhibition to be combined with CX-5461 as a non-genotoxic approach in targeting HR-proficient HGSC.
  • Item
    No Preview Available
    Inhibition of RNA polymerase I transcription activates targeted DNA damage response and enhances the efficacy of PARP inhibitors in high-grade serous ovarian cancer.
    Sanij, E ; Hannan, K ; Xuan, J ; Yan, S ; Ahern, JA ; Trigos, AS ; Brajanovski, N ; Son, J ; Chan, KT ; Kondrashova, O ; Lieschke, E ; Wakefield, MJ ; Ellis, S ; Cullinane, C ; Poortinga, G ; Khanna, KK ; Mileshkin, L ; McArthur, GA ; Soong, J ; Berns, EM ; Hannan, RD ; Scott, CL ; Sheppard, KE ; Pearson, RB (AMER ASSOC CANCER RESEARCH, 2020-07)
    Abstract Introduction: PARP inhibitors (PARPi) have revolutionized disease management of patients with homologous recombination (HR) DNA repair-deficient high-grade serous ovarian cancer (HGSOC). However, acquired resistance to PARPi is a major challenge in the clinic. The specific inhibitor of RNA polymerase I (Pol I) transcription of ribosomal RNA genes (rDNA) has demonstrated single-agent antitumor activity in p53 wild-type and p53-mutant hematologic malignancies (first-in-human trial, dose escalation study of CX-5461 at Peter MacCallum Cancer Centre) (Khot et al., Cancer Discov 2019). CX-5461 has also been reported to exhibit synthetic lethality with BRCA1/2 deficiency through stabilization of G-quadruplex DNA (GQ) structures. Here, we investigate the efficacy of CX-5461 in treating HGSOC. Experimental Design: The mechanisms by which CX-5461 induces DNA damage response (DDR) and displays synthetic lethality in HR-deficient HGSOC cells are explored. We present in vivo data of mice bearing two functionally and genomically profiled HGSOC-patient-derived xenograft (PDX)s treated with CX-5461 and olaparib, alone and in combination. We also investigate CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. Results: Utilizing ovarian cancer cell lines, we demonstrate that sensitivity to CX-5461 is associated with “BRCA1 mutation” and “MYC targets” gene expression signatures. In addition, sensitivity to CX-5461 is associated with high basal rates of Pol I transcription. Importantly, we demonstrate a novel mechanism for CX-5461 synthetic lethal interaction with HR deficiency mediated through the induction of replication stress at rDNA repeats. Our data reveal CX-5461-mediated DDR in HR-deficient cells does not involve stabilization of GQ structures as previously proposed. On the contrary, we show definitively that CX-5461 inhibits Pol I recruitment leading to rDNA chromatin defects including stabilization of R-loops, single-stranded DNA, and replication stress at the rDNA. Mechanistically, we demonstrate CX-5461 leads to replication-dependent DNA damage involving MRE11-dependent degradation of replication forks. Importantly, CX-5461 has a different sensitivity spectrum to olaparib and cooperates with PARPi in exacerbating replication stress, leading to enhanced therapeutic efficacy in HR-deficient HGSOC-PDX in vivo compared to single-agent treatment of both drugs. Further, CX-5461 exhibits single-agent efficacy in olaparib-resistant HGSOC-PDX overcoming PARPi-resistance mechanisms involving fork protection. Importantly, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. Conclusions: CX-5461 is a promising therapy alone and in combination therapy with PARPi in HR-deficient HGSOC. CX-5461 also has exciting potential as a treatment option for patients with relapsed HGSOC tumors that have high MYC activity and poor clinical outcome; these patients currently have very limited effective treatment options. This abstract is also being presented as Poster A71. Citation Format: Elaine Sanij, Katherine Hannan, Jiachen Xuan, Shunfei Yan, Jessica A. Ahern, Anna S. Trigos, Natalie Brajanovski, Jinbae Son, Keefe T. Chan, Olga Kondrashova, Elizabeth Lieschke, Matthew J. Wakefield, Sarah Ellis, Carleen Cullinane, Gretchen Poortinga, Kum Kum Khanna, Linda Mileshkin, Grant A. McArthur, John Soong, Els M. Berns, Ross D. Hannan, Clare L. Scott, Karen E. Sheppard, Richard B. Pearson. Inhibition of RNA polymerase I transcription activates targeted DNA damage response and enhances the efficacy of PARP inhibitors in high-grade serous ovarian cancer [abstract]. In: Proceedings of the AACR Special Conference on Advances in Ovarian Cancer Research; 2019 Sep 13-16, 2019; Atlanta, GA. Philadelphia (PA): AACR; Clin Cancer Res 2020;26(13_Suppl):Abstract nr PR13.
  • Item
    Thumbnail Image
    rDNA Chromatin Activity Status as a Biomarker of Sensitivity to the RNA Polymerase I Transcription Inhibitor CX-5461
    Son, J ; Hannan, KM ; Poortinga, G ; Hein, N ; Cameron, DP ; Ganley, ARD ; Sheppard, KE ; Pearson, RB ; Hannan, RD ; Sanij, E (FRONTIERS MEDIA SA, 2020-07-03)
    Hyperactivation of RNA polymerase I (Pol I) transcription of ribosomal RNA (rRNA) genes (rDNA) is a key determinant of growth and proliferation and a consistent feature of cancer cells. We have demonstrated that inhibition of rDNA transcription by the Pol I transcription inhibitor CX-5461 selectively kills tumor cells in vivo. Moreover, the first-in human trial of CX-5461 has demonstrated CX-5461 is well-tolerated in patients and has single-agent anti-tumor activity in hematologic malignancies. However, the mechanisms underlying tumor cell sensitivity to CX-5461 remain unclear. Understanding these mechanisms is crucial for the development of predictive biomarkers of response that can be utilized for stratifying patients who may benefit from CX-5461. The rDNA repeats exist in four different and dynamic chromatin states: inactive rDNA can be either methylated silent or unmethylated pseudo-silent; while active rDNA repeats are described as either transcriptionally competent but non-transcribed or actively transcribed, depending on the level of rDNA promoter methylation, loading of the essential rDNA chromatin remodeler UBF and histone marks status. In addition, the number of rDNA repeats per human cell can reach hundreds of copies. Here, we tested the hypothesis that the number and/or chromatin status of the rDNA repeats, is a critical determinant of tumor cell sensitivity to Pol I therapy. We systematically examined a panel of ovarian cancer (OVCA) cell lines to identify rDNA chromatin associated biomarkers that might predict sensitivity to CX-5461. We demonstrated that an increased proportion of active to inactive rDNA repeats, independent of rDNA copy number, determines OVCA cell line sensitivity to CX-5461. Further, using zinc finger nuclease genome editing we identified that reducing rDNA copy number leads to an increase in the proportion of active rDNA repeats and confers sensitivity to CX-5461 but also induces genome-wide instability and sensitivity to DNA damage. We propose that the proportion of active to inactive rDNA repeats may serve as a biomarker to identify cancer patients who will benefit from CX-5461 therapy in future clinical trials. The data also reinforces the notion that rDNA instability is a threat to genomic integrity and cellular homeostasis.
  • Item
    Thumbnail Image
    CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer
    Sanij, E ; Hannan, KM ; Xuan, J ; Yan, S ; Ahern, JE ; Trigos, AS ; Brajanovski, N ; Son, J ; Chan, KT ; Kondrashova, O ; Lieschke, E ; Wakefield, MJ ; Frank, D ; Ellis, S ; Cullinane, C ; Kang, J ; Poortinga, G ; Nag, P ; Deans, AJ ; Khanna, KK ; Mileshkin, L ; McArthur, GA ; Soong, J ; Berns, EMJJ ; Hannan, RD ; Scott, CL ; Sheppard, KE ; Pearson, RB (NATURE PUBLISHING GROUP, 2020-05-26)
    Acquired resistance to PARP inhibitors (PARPi) is a major challenge for the clinical management of high grade serous ovarian cancer (HGSOC). Here, we demonstrate CX-5461, the first-in-class inhibitor of RNA polymerase I transcription of ribosomal RNA genes (rDNA), induces replication stress and activates the DNA damage response. CX-5461 co-operates with PARPi in exacerbating replication stress and enhances therapeutic efficacy against homologous recombination (HR) DNA repair-deficient HGSOC-patient-derived xenograft (PDX) in vivo. We demonstrate CX-5461 has a different sensitivity spectrum to PARPi involving MRE11-dependent degradation of replication forks. Importantly, CX-5461 exhibits in vivo single agent efficacy in a HGSOC-PDX with reduced sensitivity to PARPi by overcoming replication fork protection. Further, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. We propose CX-5461 is a promising therapy in combination with PARPi in HR-deficient HGSOC and also as a single agent for the treatment of relapsed disease.
  • Item
    Thumbnail Image
    Regulation of PRMT5-MDM4 axis is critical in the response to CDK4/6 inhibitors in melanoma
    AbuHammad, S ; Cullinane, C ; Martin, C ; Bacolas, Z ; Ward, T ; Chen, H ; Slater, A ; Ardley, K ; Kirby, L ; Chan, KT ; Brajanovski, N ; Smith, LK ; Rao, AD ; Lelliott, EJ ; Kleinschmidt, M ; Vergara, IA ; Papenfuss, AT ; Lau, P ; Ghosh, P ; Haupt, S ; Haupt, Y ; Sanij, E ; Poortinga, G ; Pearson, RB ; Falk, H ; Curtis, DJ ; Stupple, P ; Devlin, M ; Street, I ; Davies, MA ; McArthur, GA ; Sheppard, KE (NATL ACAD SCIENCES, 2019-09-03)
    Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are an established treatment in estrogen receptor-positive breast cancer and are currently in clinical development in melanoma, a tumor that exhibits high rates of CDK4 activation. We analyzed melanoma cells with acquired resistance to the CDK4/6 inhibitor palbociclib and demonstrate that the activity of PRMT5, a protein arginine methyltransferase and indirect target of CDK4, is essential for CDK4/6 inhibitor sensitivity. By indirectly suppressing PRMT5 activity, palbociclib alters the pre-mRNA splicing of MDM4, a negative regulator of p53, leading to decreased MDM4 protein expression and subsequent p53 activation. In turn, p53 induces p21, leading to inhibition of CDK2, the main kinase substituting for CDK4/6 and a key driver of resistance to palbociclib. Loss of the ability of palbociclib to regulate the PRMT5-MDM4 axis leads to resistance. Importantly, combining palbociclib with the PRMT5 inhibitor GSK3326595 enhances the efficacy of palbociclib in treating naive and resistant models and also delays the emergence of resistance. Our studies have uncovered a mechanism of action of CDK4/6 inhibitors in regulating the MDM4 oncogene and the tumor suppressor, p53. Furthermore, we have established that palbociclib inhibition of the PRMT5-MDM4 axis is essential for robust melanoma cell sensitivity and provide preclinical evidence that coinhibition of CDK4/6 and PRMT5 is an effective and well-tolerated therapeutic strategy. Overall, our data provide a strong rationale for further investigation of novel combinations of CDK4/6 and PRMT5 inhibitors, not only in melanoma but other tumor types, including breast, pancreatic, and esophageal carcinoma.
  • Item
    No Preview Available
    An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice
    Kinross, KM ; Montgomery, KG ; Kleinschmidt, M ; Waring, P ; Ivetac, I ; Tikoo, A ; Saad, M ; Hare, L ; Roh, V ; Mantamadiotis, T ; Sheppard, KE ; Ryland, GL ; Campbell, IG ; Gorringe, KL ; Christensen, JG ; Cullinane, C ; Hicks, RJ ; Pearson, RB ; Johnstone, RW ; McArthur, GA ; Phillips, WA (AMER SOC CLINICAL INVESTIGATION INC, 2012-02)
    Mutations in the gene encoding the p110α subunit of PI3K (PIK3CA) that result in enhanced PI3K activity are frequently observed in human cancers. To better understand the role of mutant PIK3CA in the initiation or progression of tumorigenesis, we generated mice in which a PIK3CA mutation commonly detected in human cancers (the H1047R mutation) could be conditionally knocked into the endogenous Pik3ca locus. Activation of this mutation in the mouse ovary revealed that alone, Pik3caH1047R induced premalignant hyperplasia of the ovarian surface epithelium but no tumors. Concomitantly, we analyzed several human ovarian cancers and found PIK3CA mutations coexistent with KRAS and/or PTEN mutations, raising the possibility that a secondary defect in a co-regulator of PI3K activity may be required for mutant PIK3CA to promote transformation. Consistent with this notion, we found that Pik3caH1047R mutation plus Pten deletion in the mouse ovary led to the development of ovarian serous adenocarcinomas and granulosa cell tumors. Both mutational events were required for early, robust Akt activation. Pharmacological inhibition of PI3K/mTOR in these mice delayed tumor growth and prolonged survival. These results demonstrate that the Pik3caH1047R mutation with loss of Pten is enough to promote ovarian cell transformation and that we have developed a model system for studying possible therapies.