Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 48
  • Item
    No Preview Available
    mTOR-Dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF
    Hannan, KM ; Brandenburger, Y ; Jenkins, A ; Sharkey, K ; Cavanaugh, A ; Rothblum, L ; Moss, T ; Poortinga, G ; McArthur, GA ; Pearson, RB ; Hannan, RD (AMER SOC MICROBIOLOGY, 2003-12)
    Mammalian target of rapamycin (mTOR) is a key regulator of cell growth acting via two independent targets, ribosomal protein S6 kinase 1 (S6K1) and 4EBP1. While each is known to regulate translational efficiency, the mechanism by which they control cell growth remains unclear. In addition to increased initiation of translation, the accelerated synthesis and accumulation of ribosomes are fundamental for efficient cell growth and proliferation. Using the mTOR inhibitor rapamycin, we show that mTOR is required for the rapid and sustained serum-induced activation of 45S ribosomal gene transcription (rDNA transcription), a major rate-limiting step in ribosome biogenesis and cellular growth. Expression of a constitutively active, rapamycin-insensitive mutant of S6K1 stimulated rDNA transcription in the absence of serum and rescued rapamycin repression of rDNA transcription. Moreover, overexpression of a dominant-negative S6K1 mutant repressed transcription in exponentially growing NIH 3T3 cells. Rapamycin treatment led to a rapid dephosphorylation of the carboxy-terminal activation domain of the rDNA transcription factor, UBF, which significantly reduced its ability to associate with the basal rDNA transcription factor SL-1. Rapamycin-mediated repression of rDNA transcription was rescued by purified recombinant phosphorylated UBF and endogenous UBF from exponentially growing NIH 3T3 cells but not by hypophosphorylated UBF from cells treated with rapamycin or dephosphorylated recombinant UBF. Thus, mTOR plays a critical role in the regulation of ribosome biogenesis via a mechanism that requires S6K1 activation and phosphorylation of UBF.
  • Item
    No Preview Available
    Nuclear stabilization of p53 requires a functional nucleolar surveillance pathway
    Hannan, KM ; Soo, P ; Wong, MS ; Lee, JK ; Hein, N ; Poh, P ; Wysoke, KD ; Williams, TD ; Montellese, C ; Smith, LK ; Al-Obaidi, SJ ; Nunez-Villacis, L ; Pavy, M ; He, J-S ; Parsons, KM ; Loring, KE ; Morrison, T ; Diesch, J ; Burgio, G ; Ferreira, R ; Feng, Z-P ; Gould, CM ; Madhamshettiwar, PB ; Flygare, J ; Gonda, TJ ; Simpson, KJ ; Kutay, U ; Pearson, RB ; Engel, C ; Watkins, NJ ; Hannan, RD ; George, AJ (CELL PRESS, 2022-11-01)
    The nucleolar surveillance pathway monitors nucleolar integrity and responds to nucleolar stress by mediating binding of ribosomal proteins to MDM2, resulting in p53 accumulation. Inappropriate pathway activation is implicated in the pathogenesis of ribosomopathies, while drugs selectively activating the pathway are in trials for cancer. Despite this, the molecular mechanism(s) regulating this process are poorly understood. Using genome-wide loss-of-function screens, we demonstrate the ribosome biogenesis axis as the most potent class of genes whose disruption stabilizes p53. Mechanistically, we identify genes critical for regulation of this pathway, including HEATR3. By selectively disabling the nucleolar surveillance pathway, we demonstrate that it is essential for the ability of all nuclear-acting stresses, including DNA damage, to induce p53 accumulation. Our data support a paradigm whereby the nucleolar surveillance pathway is the central integrator of stresses that regulate nuclear p53 abundance, ensuring that ribosome biogenesis is hardwired to cellular proliferative capacity.
  • Item
    No Preview Available
    Spatial analysis with SPIAT and spaSim to characterize and simulate tissue microenvironments
    Feng, Y ; Yang, T ; Zhu, J ; Li, M ; Doyle, M ; Ozcoban, V ; Bass, GTT ; Pizzolla, A ; Cain, L ; Weng, S ; Pasam, A ; Kocovski, N ; Huang, Y-K ; Keam, SPP ; Speed, TPP ; Neeson, PJ ; Pearson, RBB ; Sandhu, S ; Goode, DLL ; Trigos, ASS (NATURE PORTFOLIO, 2023-05-15)
    Spatial proteomics technologies have revealed an underappreciated link between the location of cells in tissue microenvironments and the underlying biology and clinical features, but there is significant lag in the development of downstream analysis methods and benchmarking tools. Here we present SPIAT (spatial image analysis of tissues), a spatial-platform agnostic toolkit with a suite of spatial analysis algorithms, and spaSim (spatial simulator), a simulator of tissue spatial data. SPIAT includes multiple colocalization, neighborhood and spatial heterogeneity metrics to characterize the spatial patterns of cells. Ten spatial metrics of SPIAT are benchmarked using simulated data generated with spaSim. We show how SPIAT can uncover cancer immune subtypes correlated with prognosis in cancer and characterize cell dysfunction in diabetes. Our results suggest SPIAT and spaSim as useful tools for quantifying spatial patterns, identifying and validating correlates of clinical outcomes and supporting method development.
  • Item
    Thumbnail Image
    Cystathionine-β-synthase is essential for AKT-induced senescence and suppresses the development of gastric cancers with PI3K/AKT activation
    Zhu, H ; Chan, KT ; Huang, X ; Cerra, C ; Blake, S ; Trigos, AS ; Anderson, D ; Creek, DJ ; De Souza, DP ; Wang, X ; Fu, C ; Jana, M ; Sanij, E ; Pearson, RB ; Kang, J (eLIFE SCIENCES PUBL LTD, 2022-06-27)
    Hyperactivation of oncogenic pathways downstream of RAS and PI3K/AKT in normal cells induces a senescence-like phenotype that acts as a tumor-suppressive mechanism that must be overcome during transformation. We previously demonstrated that AKT-induced senescence (AIS) is associated with profound transcriptional and metabolic changes. Here, we demonstrate that human fibroblasts undergoing AIS display upregulated cystathionine-β-synthase (CBS) expression and enhanced uptake of exogenous cysteine, which lead to increased hydrogen sulfide (H2S) and glutathione (GSH) production, consequently protecting senescent cells from oxidative stress-induced cell death. CBS depletion allows AIS cells to escape senescence and re-enter the cell cycle, indicating the importance of CBS activity in maintaining AIS. Mechanistically, we show this restoration of proliferation is mediated through suppressing mitochondrial respiration and reactive oxygen species (ROS) production by reducing mitochondrial localized CBS while retaining antioxidant capacity of transsulfuration pathway. These findings implicate a potential tumor-suppressive role for CBS in cells with aberrant PI3K/AKT pathway activation. Consistent with this concept, in human gastric cancer cells with activated PI3K/AKT signaling, we demonstrate that CBS expression is suppressed due to promoter hypermethylation. CBS loss cooperates with activated PI3K/AKT signaling in promoting anchorage-independent growth of gastric epithelial cells, while CBS restoration suppresses the growth of gastric tumors in vivo. Taken together, we find that CBS is a novel regulator of AIS and a potential tumor suppressor in PI3K/AKT-driven gastric cancers, providing a new exploitable metabolic vulnerability in these cancers.
  • Item
    Thumbnail Image
    Adaptive translational reprogramming of metabolism limits the response to targeted therapy in BRAFV600 melanoma
    Smith, LK ; Parmenter, T ; Kleinschmidt, M ; Kusnadi, EP ; Kang, J ; Martin, CA ; Lau, P ; Patel, R ; Lorent, J ; Papadopoli, D ; Trigos, A ; Ward, T ; Rao, AD ; Lelliott, EJ ; Sheppard, KE ; Goode, D ; Hicks, RJ ; Tiganis, T ; Simpson, KJ ; Larsson, O ; Blythe, B ; Cullinane, C ; Wickramasinghe, VO ; Pearson, RB ; McArthur, GA (NATURE PORTFOLIO, 2022-03-01)
    Despite the success of therapies targeting oncogenes in cancer, clinical outcomes are limited by residual disease that ultimately results in relapse. This residual disease is often characterized by non-genetic adaptive resistance, that in melanoma is characterised by altered metabolism. Here, we examine how targeted therapy reprograms metabolism in BRAF-mutant melanoma cells using a genome-wide RNA interference (RNAi) screen and global gene expression profiling. Using this systematic approach we demonstrate post-transcriptional regulation of metabolism following BRAF inhibition, involving selective mRNA transport and translation. As proof of concept we demonstrate the RNA processing kinase U2AF homology motif kinase 1 (UHMK1) associates with mRNAs encoding metabolism proteins and selectively controls their transport and translation during adaptation to BRAF-targeted therapy. UHMK1 inactivation induces cell death by disrupting therapy induced metabolic reprogramming, and importantly, delays resistance to BRAF and MEK combination therapy in multiple in vivo models. We propose selective mRNA processing and translation by UHMK1 constitutes a mechanism of non-genetic resistance to targeted therapy in melanoma by controlling metabolic plasticity induced by therapy.
  • Item
    Thumbnail Image
    Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy
    Kang, J ; Brajanovski, N ; Chan, KT ; Xuan, J ; Pearson, RB ; Sanij, E (SPRINGERNATURE, 2021-08-30)
    Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.
  • Item
    Thumbnail Image
    Palbociclib synergizes with BRAF and MEK inhibitors in treatment naive melanoma but not after the development of BRAF inhibitor resistance
    Martin, CA ; Cullinane, C ; Kirby, L ; Abuhammad, S ; Lelliott, EJ ; Waldeck, K ; Young, RJ ; Brajanovski, N ; Cameron, DP ; Walker, R ; Sanij, E ; Poortinga, G ; Hannan, RD ; Pearson, RB ; Hicks, RJ ; McArthur, GA ; Sheppard, KE (WILEY, 2018-05-15)
    Increased CDK4 activity occurs in the majority of melanomas and CDK4/6 inhibitors in combination with BRAF and MEK inhibitors are currently in clinical trials for the treatment of melanoma. We hypothesize that the timing of the addition of CDK4/6 inhibitors to the current BRAF and MEK inhibitor regime will impact on the efficacy of this triplet drug combination. The efficacy of BRAF, MEK and CDK4/6 inhibitors as single agents and in combination was assessed in human BRAF mutant cell lines that were treatment naïve, BRAF inhibitor tolerant or had acquired resistance to BRAF inhibitors. Xenograft studies were then performed to test the in vivo efficacy of the BRAF and CDK4/6 inhibitor combination. Melanoma cells that had developed early reversible tolerance or acquired resistance to BRAF inhibition remained sensitive to palbociclib. In drug-tolerant cells, the efficacy of the combination of palbociclib with BRAF and/or MEK inhibitors was equivalent to single agent palbociclib. Similarly, acquired BRAF inhibitor resistance cells lost efficacy to the palbociclib and BRAF combination. In contrast, upfront treatment of melanoma cells with palbociclib in combination with BRAF and/or MEK inhibitors induced either cell death or senescence and was superior to a BRAF plus MEK inhibitor combination. In vivo palbociclib plus BRAF inhibitor induced rapid and sustained tumor regression without the development of therapy resistance. In summary, upfront dual targeting of CDK4/6 and mutant BRAF signaling enables tumor cells to evade resistance to monotherapy and is required for robust and sustained tumor regression. Melanoma patients whose tumors have acquired resistance to BRAF inhibition are less likely to have favorable responses to subsequent treatment with the triplet combination of BRAF, MEK and CDK4/6 inhibitors.
  • Item
    No Preview Available
    AKT-independent PI3-K signaling in cancer - emerging role for SGK3.
    Bruhn, MA ; Pearson, RB ; Hannan, RD ; Sheppard, KE (Informa UK Limited, 2013)
    The phosphoinositide 3-kinase (PI3-K) signaling pathway plays an important role in a wide variety of fundamental cellular processes, largely mediated via protein kinase B/v-akt murine thymoma viral oncogene homolog (PKB/AKT) signaling. Given the crucial role of PI3-K/AKT signaling in regulating processes such as cell growth, proliferation, and survival, it is not surprising that components of this pathway are frequently dysregulated in cancer, making the AKT kinase family members important therapeutic targets. The large number of clinical trials currently evaluating PI3-K pathway inhibitors as a therapeutic strategy further emphasizes this. The serum- and glucocorticoid-inducible protein kinase (SGK) family is made up of three isoforms, SGK1, 2, and 3, that are PI3-K-dependent, serine/threonine kinases, with similar substrate specificity to AKT. Consequently, the SGK family also regulates similar cell processes to the AKT kinases, including cell proliferation and survival. Importantly, there is emerging evidence demonstrating that SGK3 plays a critical role in AKT-independent oncogenic signaling. This review will focus on the role of SGK3 as a key effector of AKT-independent PI3-K oncogenic signaling.
  • Item
    Thumbnail Image
    Autophagy Induction Is a Tor- and Tp53-Independent Cell Survival Response in a Zebrafish Model of Disrupted Ribosome Biogenesis
    Boglev, Y ; Badrock, AP ; Trotter, AJ ; Du, Q ; Richardson, EJ ; Parslow, AC ; Markmiller, SJ ; Hall, NE ; de Jong-Curtain, TA ; Ng, AY ; Verkade, H ; Ober, EA ; Field, HA ; Shin, D ; Shin, CH ; Hannan, KM ; Hannan, RD ; Pearson, RB ; Kim, S-H ; Ess, KC ; Lieschke, GJ ; Stainier, DYR ; Heath, JK ; Trainor, PA (PUBLIC LIBRARY SCIENCE, 2013-02)
    Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a novel zebrafish mutant, titania (tti(s450)), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature 18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In tti(s450), the growth of the endodermal organs, eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells to evade cell death. Inhibiting autophagy in tti(s450) larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy induction in tti(s450) larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae. These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts, these treatments may promote autophagy and contribute to cancer cells evading cell death.
  • Item
    Thumbnail Image
    Autophosphorylation of serine 608 in the p85 regulatory subunit of wild type or cancer-associated mutants of phosphoinositide 3-kinase does not affect its lipid kinase activity
    Layton, MJ ; Saad, M ; Church, NL ; Pearson, RB ; Mitchell, CA ; Phillips, WA (BMC, 2012-12-27)
    BACKGROUND: The α-isoform of the Type 1A Phosphoinositide 3-kinases (PI3Kα) has protein kinase activity as well as phosphoinositide lipid kinase activity. The best described substrate for its protein kinase activity is its regulatory subunit, p85α, which becomes phosphorylated on Serine 608. Phosphorylation of Serine 608 has been reported to down-regulate its lipid kinase activity. RESULTS: We have assessed whether oncogenic mutants of PI3Kα, which have up-regulated lipid kinase activity, have altered levels of Serine 608 phosphorylation compared to wild type PI3Kα, and whether differential phosphorylation of Serine 608 contributes to increased activity of oncogenic forms of PI3Kα with point mutations in the helical or the kinase domains. Despite markedly increased lipid kinase activity, protein kinase activity was not altered in oncogenic compared to wild type forms of PI3Kα. By manipulating levels of phosphorylation of Serine 608 in vitro, we found no evidence that the protein kinase activity of PI3Kα affects its phosphoinositide lipid kinase activity in either wild-type or oncogenic mutants of PI3Kα. CONCLUSIONS: Phosphorylation of p85α S608 is not a significant regulator of wild-type or oncogenic PI3Kα lipid kinase activity.