Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    No Preview Available
    Exploration of a Series of 5-Arylidene-2-thioxoimidazolidin-4-ones as Inhibitors of the Cytolytic Protein Perforin
    Spicer, JA ; Lena, G ; Lyons, DM ; Huttunen, KM ; Miller, CK ; O'Connor, PD ; Bull, M ; Helsby, N ; Jamieson, SMF ; Denny, WA ; Ciccone, A ; Browne, KA ; Lopez, JA ; Rudd-Schmidt, J ; Voskoboinik, I ; Trapani, JA (AMER CHEMICAL SOC, 2013-12-12)
    A series of novel 5-arylidene-2-thioxoimidazolidin-4-ones were investigated as inhibitors of the lymphocyte-expressed pore-forming protein perforin. Structure-activity relationships were explored through variation of an isoindolinone or 3,4-dihydroisoquinolinone subunit on a fixed 2-thioxoimidazolidin-4-one/thiophene core. The ability of the resulting compounds to inhibit the lytic activity of both isolated perforin protein and perforin delivered in situ by natural killer cells was determined. A number of compounds showed excellent activity at concentrations that were nontoxic to the killer cells, and several were a significant improvement on previous classes of inhibitors, being substantially more potent and soluble. Representative examples showed rapid and reversible binding to immobilized mouse perforin at low concentrations (≤2.5 μM) by surface plasmon resonance and prevented formation of perforin pores in target cells despite effective target cell engagement, as determined by calcium influx studies. Mouse PK studies of two analogues showed T1/2 values of 1.1-1.2 h (dose of 5 mg/kg i.v.) and MTDs of 60-80 mg/kg (i.p.).
  • Item
    No Preview Available
    Fatal immune dysregulation due to a gain of glycosylation mutation in lymphocyte perforin
    Chia, J ; Thia, K ; Brennan, AJ ; Little, M ; Williams, B ; Lopez, JA ; Trapani, JA ; Voskoboinik, I (AMER SOC HEMATOLOGY, 2012-02-16)
    Mutations in the perforin gene (PRF1) are a common cause of the fatal immune dysregulation disorder, familial hemophagocytic lymphohistiocytosis (type 2 FHL, FHL2). Here we report a female infant born with biallelic PRF1 mutations: a novel substitution, D49N, and a previously identified in-frame deletion, K285del. We assessed the effects of each mutation on the cytotoxicity of human NK cells in which the expression of endogenous perforin was ablated with miR30-based short hairpin (sh) RNAs. Both mutations were detrimental for function, thereby explaining the clinically severe presentation and rapidly fatal outcome. We demonstrate that D49N exerts its deleterious effect by generating an additional (third) N-linked glycosylation site, resulting in protein misfolding and degradation in the killer cell. Our data provide a rationale for treating some cases of type 2 familial hemophagocytic lymphohistiocytosis, based on the pharmacologic inhibition or modification of glycosylation.
  • Item
    No Preview Available
    Surprisingly variable "dangers, toils, and snares" faced by humans and mice
    Trapani, JA ; Voskoboinik, I (AMER SOC HEMATOLOGY, 2013-01-24)
  • Item
    Thumbnail Image
    Perforinopatly: a spectrum of human immune disease caused by defective perforin delivery or function
    Voskoboinik, I ; Trapani, JA (FRONTIERS MEDIA SA, 2013)
    Congenital perforin deficiency is considered a rare cause of human immunopathology and immune dysregulation, and classically presents as a fatal illness early in infancy. However, we propose that a group of related disorders in which killer lymphocytes deliver only partially active perforin or a reduced quantum of wild-type perforin to the immune synapse should be considered part of an extended syndrome with overlapping but more variable clinical features. Apart from the many rare mutations scattered over the coding sequences, up to 10% of Caucasians carry the severely hypomorphic PRF1 allele C272 > T (leading to A91V mutation) and the overall prevalence of the homozygous state for A91V is around 1 in 600 individuals. We therefore postulate that the partial loss of perforin function and its clinical consequences may be more common then currently suspected. An acute clinical presentation is infrequent in A91V heterozygous individuals, but we postulate that the partial loss of perforin function may potentially be manifested in childhood or early adulthood as "idiopathic" inflammatory disease, or through increased cancer susceptibility - either hematological malignancy or multiple, independent primary cancers. We suggest the new term "perforinopathy" to signify the common functional endpoints of all the known consequences of perforin deficiency and failure to deliver fully functional perforin.
  • Item
    Thumbnail Image
    Human perforin mutations and susceptibility to multiple primary cancers
    Trapani, JA ; Thia, KYT ; Andrews, M ; Davis, ID ; Gedye, C ; Parente, P ; Svobodova, S ; Chia, J ; Browne, K ; Campbell, IG ; Phillips, WA ; Voskoboinik, I ; Cebon, JS (TAYLOR & FRANCIS INC, 2013-04-01)
    Loss-of-function mutations in the gene coding for perforin (PRF1) markedly reduce the ability of cytotoxic T lymphocytes and natural killer cells to kill target cells, causing immunosuppression and impairing immune regulation. In humans, nearly half of the cases of type 2 familial hemophagocytic lymphohistiocytosis are due to bi-allelic PRF1 mutations. The partial inactivation of PRF1 due to mutations that promote protein misfolding or the common hypomorphic allele coding for the A91V substitution have been associated with lymphoid malignancies in childhood and adolescence. To investigate whether PRF1 mutations also predispose adults to cancer, we genotyped 566 individuals diagnosed with melanoma (101), lymphoma (65), colorectal carcinoma (30) or ovarian cancer (370). The frequency of PRF1 genotypes was similar in all disease groups and 424 matched controls, indicating that the PRF1 status is not associated with an increased susceptibility to these malignancies. However, four out of 15 additional individuals diagnosed with melanoma and B-cell lymphoma during their lifetime expressed either PRF1A91V or the rare pathogenic PRF1R28C variant (p = 0.04), and developed melanoma relatively early in life. Both PRF1A91V- and PRF1R28C-expressing lymphocytes exhibited severely impaired but measurable cytotoxic function. Our results suggest that defects in human PRF1 predispose individuals to develop both melanoma and lymphoma. However, these findings require validation in larger patient cohorts.
  • Item
    No Preview Available
    Perforin forms transient pores on the target cell plasma membrane to facilitate rapid access of granzymes during killer cell attack
    Lopez, JA ; Susanto, O ; Jenkins, MR ; Lukoyanova, N ; Sutton, VR ; Law, RHP ; Johnston, A ; Bird, CH ; Bird, PI ; Whisstock, JC ; Trapani, JA ; Saibil, HR ; Voskoboinik, I (AMER SOC HEMATOLOGY, 2013-04-04)
    Cytotoxic lymphocytes serve a key role in immune homeostasis by eliminating virus-infected and transformed target cells through the perforin-dependent delivery of proapoptotic granzymes. However, the mechanism of granzyme entry into cells remains unresolved. Using biochemical approaches combined with time-lapse microscopy of human primary cytotoxic lymphocytes engaging their respective targets, we defined the time course of perforin pore formation in the context of the physiological immune synapse. We show that, on recognition of targets, calcium influx into the lymphocyte led to perforin exocytosis and target cell permeabilization in as little as 30 seconds. Within the synaptic cleft, target cell permeabilization by perforin resulted in the rapid diffusion of extracellular milieu-derived granzymes. Repair of these pores was initiated within 20 seconds and was completed within 80 seconds, thus limiting granzyme diffusion. Remarkably, even such a short time frame was sufficient for the delivery of lethal amounts of granzymes into the target cell. Rapid initiation of apoptosis was evident from caspase-dependent target cell rounding within 2 minutes of perforin permeabilization. This study defines the final sequence of events controlling cytotoxic lymphocyte immune defense, in which perforin pores assemble on the target cell plasma membrane, ensuring efficient delivery of lethal granzymes.
  • Item
    No Preview Available
    Defining the interaction of perforin with calcium and the phospholipid membrane
    Traore, DAK ; Brennan, AJ ; Law, RHP ; Dogovski, C ; Perugini, MA ; Lukoyanova, N ; Leung, EWW ; Norton, RS ; Lopez, JA ; Browne, KA ; Yagita, H ; Lloyd, GJ ; Ciccone, A ; Verschoor, S ; Trapani, JA ; Whisstock, JC ; Voskoboinik, I (PORTLAND PRESS LTD, 2013-12-15)
    Following its secretion from cytotoxic lymphocytes into the immune synapse, perforin binds to target cell membranes through its Ca(2+)-dependent C2 domain. Membrane-bound perforin then forms pores that allow passage of pro-apoptopic granzymes into the target cell. In the present study, structural and biochemical studies reveal that Ca(2+) binding triggers a conformational change in the C2 domain that permits four key hydrophobic residues to interact with the plasma membrane. However, in contrast with previous suggestions, these movements and membrane binding do not trigger irreversible conformational changes in the pore-forming MACPF (membrane attack complex/perforin-like) domain, indicating that subsequent monomer-monomer interactions at the membrane surface are required for perforin pore formation.
  • Item
    No Preview Available
    Rapid and Unidirectional Perforin Pore Delivery at the Cytotoxic Immune Synapse
    Lopez, JA ; Jenkins, MR ; Rudd-Schmidt, JA ; Brennan, AJ ; Danne, JC ; Mannering, SI ; Trapani, JA ; Voskoboinik, I (AMER ASSOC IMMUNOLOGISTS, 2013-09-01)
    The effective engagement of cytotoxic lymphocytes (CLs) with their target cells is essential for the removal of virus-infected and malignant cells from the body. The spatiotemporal properties that define CL engagement and killing of target cells remain largely uncharacterized due to a lack of biological reporters. We have used a novel live cell microscopy technique to visualize the engagement of primary human and mouse CL with their targets and the subsequent delivery of the lethal hit. Extensive quantitative real-time analysis of individual effector-target cell conjugates demonstrated that a single effector calcium flux event was sufficient for the degranulation of human CLs, resulting in the breach of the target cell membrane by perforin within 65-100 s. In contrast, mouse CLs demonstrated distinct calcium signaling profiles leading to degranulation: whereas mouse NKs required a single calcium flux event, CD8(+) T cells typically required several calcium flux events before perforin delivery. Irrespective of their signaling profile, every target cell that was damaged by perforin died by apoptosis. To our knowledge, we demonstrate for the first time that perforin pore delivery is unidirectional, occurring exclusively on the target cell membrane, but sparing the killer cell. Despite this, the CTL membrane was not intrinsically perforin resistant, as intact CTLs presented as targets to effector CTLs were capable of being killed by perforin-dependent mechanisms. Our results highlight the remarkable efficiency and specificity of perforin pore delivery by CLs.