Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    Thumbnail Image
    Serglycin determines secretory granule repertoire and regulates natural killer cell and cytotoxic T lymphocyte cytotoxicity
    Sutton, VR ; Brennan, AJ ; Ellis, S ; Danne, J ; Thia, K ; Jenkins, MR ; Voskoboinik, I ; Pejler, G ; Johnstone, RW ; Andrews, DM ; Trapani, JA (WILEY, 2016-03)
    The anionic proteoglycan serglycin is a major constituent of secretory granules in cytotoxic T lymphocyte (CTL)/natural killer (NK) cells, and is proposed to promote the safe storage of the mostly cationic granule toxins, granzymes and perforin. Despite the extensive defects of mast cell function reported in serglycin gene-disrupted mice, no comprehensive study of physiologically relevant CTL/NK cell populations has been reported. We show that the cytotoxicity of serglycin-deficient CTL and NK cells is severely compromised but can be partly compensated in both cell types when they become activated. Reduced intracellular granzyme B levels were noted, particularly in CD27(+) CD11b(+) mature NK cells, whereas serglycin(-/-) TCR-transgenic (OTI) CD8 T cells also had reduced perforin stores. Culture supernatants from serglycin(-/-) OTI T cells and interleukin-2-activated NK contained increased granzyme B, linking reduced storage with heightened export. By contrast, granzyme A was not significantly reduced in cells lacking serglycin, indicating differentially regulated trafficking and/or storage for the two granzymes. A quantitative analysis of different granule classes by transmission electronmicroscopy showed a selective loss of dense-core granules in serglycin(-/-) CD8(+) CTLs, although other granule types were maintained quantitatively. The findings of the present study show that serglycin plays a critical role in the maturation of dense-core cytotoxic granules in cytotoxic lymphocytes and the trafficking and storage of perforin and granzyme B, whereas granzyme A is unaffected. The skewed retention of cytotoxic effector molecules markedly reduces CTL/NK cell cytotoxicity, although this is partly compensated for as a result of activating the cells by physiological means.
  • Item
    Thumbnail Image
    CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity
    Burr, ML ; Sparbier, CE ; Chan, Y-C ; Williamson, JC ; Woods, K ; Beavis, PA ; Lam, EYN ; Henderson, MA ; Bell, CC ; Stolzenburg, S ; Gilan, O ; Bloor, S ; Noori, T ; Morgens, DW ; Bassik, MC ; Neeson, PJ ; Behren, A ; Darcy, PK ; Dawson, S-J ; Voskoboinik, I ; Trapani, JA ; Cebon, J ; Lehner, PJ ; Dawson, MA (NATURE RESEARCH, 2017-09-07)
    Cancer cells exploit the expression of the programmed death-1 (PD-1) ligand 1 (PD-L1) to subvert T-cell-mediated immunosurveillance. The success of therapies that disrupt PD-L1-mediated tumour tolerance has highlighted the need to understand the molecular regulation of PD-L1 expression. Here we identify the uncharacterized protein CMTM6 as a critical regulator of PD-L1 in a broad range of cancer cells, by using a genome-wide CRISPR-Cas9 screen. CMTM6 is a ubiquitously expressed protein that binds PD-L1 and maintains its cell surface expression. CMTM6 is not required for PD-L1 maturation but co-localizes with PD-L1 at the plasma membrane and in recycling endosomes, where it prevents PD-L1 from being targeted for lysosome-mediated degradation. Using a quantitative approach to profile the entire plasma membrane proteome, we find that CMTM6 displays specificity for PD-L1. Notably, CMTM6 depletion decreases PD-L1 without compromising cell surface expression of MHC class I. CMTM6 depletion, via the reduction of PD-L1, significantly alleviates the suppression of tumour-specific T cell activity in vitro and in vivo. These findings provide insights into the biology of PD-L1 regulation, identify a previously unrecognized master regulator of this critical immune checkpoint and highlight a potential therapeutic target to overcome immune evasion by tumour cells.
  • Item
    No Preview Available
    Exploration of a Series of 5-Arylidene-2-thioxoimidazolidin-4-ones as Inhibitors of the Cytolytic Protein Perforin
    Spicer, JA ; Lena, G ; Lyons, DM ; Huttunen, KM ; Miller, CK ; O'Connor, PD ; Bull, M ; Helsby, N ; Jamieson, SMF ; Denny, WA ; Ciccone, A ; Browne, KA ; Lopez, JA ; Rudd-Schmidt, J ; Voskoboinik, I ; Trapani, JA (AMER CHEMICAL SOC, 2013-12-12)
    A series of novel 5-arylidene-2-thioxoimidazolidin-4-ones were investigated as inhibitors of the lymphocyte-expressed pore-forming protein perforin. Structure-activity relationships were explored through variation of an isoindolinone or 3,4-dihydroisoquinolinone subunit on a fixed 2-thioxoimidazolidin-4-one/thiophene core. The ability of the resulting compounds to inhibit the lytic activity of both isolated perforin protein and perforin delivered in situ by natural killer cells was determined. A number of compounds showed excellent activity at concentrations that were nontoxic to the killer cells, and several were a significant improvement on previous classes of inhibitors, being substantially more potent and soluble. Representative examples showed rapid and reversible binding to immobilized mouse perforin at low concentrations (≤2.5 μM) by surface plasmon resonance and prevented formation of perforin pores in target cells despite effective target cell engagement, as determined by calcium influx studies. Mouse PK studies of two analogues showed T1/2 values of 1.1-1.2 h (dose of 5 mg/kg i.v.) and MTDs of 60-80 mg/kg (i.p.).
  • Item
    Thumbnail Image
    Conformational Changes during Pore Formation by the Perforin-Related Protein Pleurotolysin
    Lukoyanova, N ; Kondos, SC ; Farabella, I ; Law, RHP ; Reboul, CF ; Caradoc-Davies, TT ; Spicer, BA ; Kleifeld, O ; Traore, DAK ; Ekkel, SM ; Voskoboinik, I ; Trapani, JA ; Hatfaludi, T ; Oliver, K ; Hotze, EM ; Tweten, RK ; Whisstock, JC ; Topf, M ; Saibil, HR ; Dunstone, MA ; Dutzler, R (PUBLIC LIBRARY SCIENCE, 2015-02)
    Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ∼70° opening of the bent and distorted central β-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane β-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of β-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into β-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted β-barrel. The intermediate structures of the MACPF domain during refolding into the β-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters, suggesting why this region is targeted by endogenous inhibitors of MACPF function.
  • Item
    Thumbnail Image
    A Natural Genetic Variant of Granzyme B Confers Lethality to a Common Viral Infection
    Andoniou, CE ; Sutton, VR ; Wikstrom, ME ; Fleming, P ; Thia, KYT ; Matthews, AY ; Kaiserman, D ; Schuster, IS ; Coudert, JD ; Eldi, P ; Chaudhri, G ; Karupiah, G ; Bird, PI ; Trapani, JA ; Degli-Esposti, MA ; Mossman, KL (PUBLIC LIBRARY SCIENCE, 2014-12)
    Many immune response genes are highly polymorphic, consistent with the selective pressure imposed by pathogens over evolutionary time, and the need to balance infection control with the risk of auto-immunity. Epidemiological and genomic studies have identified many genetic variants that confer susceptibility or resistance to pathogenic micro-organisms. While extensive polymorphism has been reported for the granzyme B (GzmB) gene, its relevance to pathogen immunity is unexplored. Here, we describe the biochemical and cytotoxic functions of a common allele of GzmB (GzmBW) common in wild mouse. While retaining 'Asp-ase' activity, GzmBW has substrate preferences that differ considerably from GzmBP, which is common to all inbred strains. In vitro, GzmBW preferentially cleaves recombinant Bid, whereas GzmBP activates pro-caspases directly. Recombinant GzmBW and GzmBP induced equivalent apoptosis of uninfected targets cells when delivered with perforin in vitro. Nonetheless, mice homozygous for GzmBW were unable to control murine cytomegalovirus (MCMV) infection, and succumbed as a result of excessive liver damage. Although similar numbers of anti-viral CD8 T cells were generated in both mouse strains, GzmBW-expressing CD8 T cells isolated from infected mice were unable to kill MCMV-infected targets in vitro. Our results suggest that known virally-encoded inhibitors of the intrinsic (mitochondrial) apoptotic pathway account for the increased susceptibility of GzmBW mice to MCMV. We conclude that different natural variants of GzmB have a profound impact on the immune response to a common and authentic viral pathogen.
  • Item
    Thumbnail Image
    B cell-derived circulating granzyme B is a feature of acute infectious mononucleosis
    Hagn, M ; Panikkar, A ; Smith, C ; Balfour, HH ; Khanna, R ; Voskoboinik, I ; Trapani, JA (NATURE PUBLISHING GROUP, 2015-06)
    Granzyme B (GzmB) is a serine protease best known for inducing target cell apoptosis when released by cytotoxic T lymphocytes (CTLs) or natural killer cells with pore-forming perforin. As a result, GzmB detected in the serum of virus-infected individuals has typically been attributed to these sources. Here, we show that patients with recently diagnosed infectious mononucleosis caused by Epstein-Barr virus (EBV) have high circulating levels of GzmB that may be derived from infected B cells early in course of disease. We recently reported that human B cells from healthy donors secrete active GzmB when stimulated in vitro through B-cell receptor (BCR) ligation and interleukin (IL)-21. We found that infecting B cells with EBV greatly amplified GzmB secretion in response to the same stimuli, but the expression was terminated once the infection had become latent. Our results represent a rare instance of GzmB expression by non-CTL/natural killer cells in the context of infection with a human pathogen.
  • Item
    Thumbnail Image
    Substituted arylsulphonamides as inhibitors of perforin-mediated lysis
    Spicer, JA ; Miller, CK ; O'Connor, PD ; Jose, J ; Huttunen, KM ; Jaiswal, JK ; Denny, WA ; Akhlaghi, H ; Browne, KA ; Trapani, JA (ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER, 2017-09-08)
    The structure-activity relationships for a series of arylsulphonamide-based inhibitors of the pore-forming protein perforin have been explored. Perforin is a key component of the human immune response, however inappropriate activity has also been implicated in certain auto-immune and therapy-induced conditions such as allograft rejection and graft versus host disease. Since perforin is expressed exclusively by cells of the immune system, inhibition of this protein would be a highly selective strategy for the immunosuppressive treatment of these disorders. Compounds from this series were demonstrated to be potent inhibitors of the lytic action of both isolated recombinant perforin and perforin secreted by natural killer cells in vitro. Several potent and soluble examples were assessed for in vivo pharmacokinetic properties and found to be suitable for progression to an in vivo model of transplant rejection.
  • Item
    Thumbnail Image
    Diarylthiophenes as inhibitors of the pore-forming protein perforin
    Miller, CK ; Huttunen, KM ; Denny, WA ; Jaiswal, JK ; Ciccone, A ; Browne, KA ; Trapani, JA ; Spicer, JA (PERGAMON-ELSEVIER SCIENCE LTD, 2016-01-15)
    Evolution from a furan-containing high-throughput screen (HTS) hit (1) resulted in isobenzofuran-1(3H)-one (2) as a potent inhibitor of the function of both isolated perforin protein and perforin delivered in situ by intact KHYG-1 NK cells. In the current study, structure-activity relationship (SAR) development towards a novel series of diarylthiophene analogues has continued through the use of substituted-benzene and -pyridyl moieties as bioisosteres for 2-thioxoimidazolidin-4-one (A) on a thiophene (B) -isobenzofuranone (C) scaffold. The resulting compounds were tested for their ability to inhibit perforin lytic activity in vitro. Carboxamide (23) shows a 4-fold increase over (2) in lytic activity against isolated perforin and provides good rationale for continued development within this class.
  • Item
    Thumbnail Image
    Benzenesulphonamide inhibitors of the cytolytic protein perforin
    Spicer, JA ; Miller, CK ; O'Connor, PD ; Jose, J ; Huttunen, KM ; Jaiswal, JK ; Denny, WA ; Akhlaghi, H ; Browne, KA ; Trapani, JA (PERGAMON-ELSEVIER SCIENCE LTD, 2017-02-15)
    The pore-forming protein perforin is a key component of mammalian cell-mediated immunity and essential to the pathway that allows elimination of virus-infected and transformed cells. Perforin activity has also been implicated in certain auto-immune conditions and therapy-induced conditions such as allograft rejection and graft versus host disease. An inhibitor of perforin activity could be used as a highly specific immunosuppressive treatment for these conditions, with reduced side-effects compared to currently accepted therapies. Previously identified first-in-class inhibitors based on a 2-thioxoimidazolidin-4-one core show suboptimal physicochemical properties and toxicity toward the natural killer (NK) cells that secrete perforin in vivo. The current benzenesulphonamide-based series delivers a non-toxic bioisosteric replacement possessing improved solubility.
  • Item
    Thumbnail Image
    Agonist immunotherapy restores T cell function following MEK inhibition improving efficacy in breast cancer
    Dushyanthen, S ; Teo, ZL ; Caramia, F ; Savas, P ; Mintoff, CP ; Virassamy, B ; Henderson, MA ; Luen, SJ ; Mansour, M ; Kershaw, MH ; Trapani, JA ; Neeson, PJ ; Salgado, R ; McArthur, GA ; Balko, JM ; Beavis, PA ; Darcy, PK ; Loi, S (NATURE PUBLISHING GROUP, 2017-09-19)
    The presence of tumor-infiltrating lymphocytes in triple-negative breast cancers is correlated with improved outcomes. Ras/MAPK pathway activation is associated with significantly lower levels of tumor-infiltrating lymphocytes in triple-negative breast cancers and while MEK inhibition can promote recruitment of tumor-infiltrating lymphocytes to the tumor, here we show that MEK inhibition adversely affects early onset T-cell effector function. We show that α-4-1BB and α-OX-40 T-cell agonist antibodies can rescue the adverse effects of MEK inhibition on T cells in both mouse and human T cells, which results in augmented anti-tumor effects in vivo. This effect is dependent upon increased downstream p38/JNK pathway activation. Taken together, our data suggest that although Ras/MAPK pathway inhibition can increase tumor immunogenicity, the negative impact on T-cell activity is functionally important. This undesirable impact is effectively prevented by combination with T-cell immune agonist immunotherapies resulting in superior therapeutic efficacy.MEK inhibition in breast cancer is associated with increased tumour infiltrating lymphocytes (TILs), however, MAPK activity is required for T cells function. Here the authors show that TILs activity following MEK inhibition can be enhanced by agonist immunotherapy resulting in synergic therapeutic effects.