Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 35
  • Item
    No Preview Available
    A cell-based functional assay that accurately links genotype to phenotype in familial HLH
    Noori, T ; Rudd-Schmidt, JA ; Kane, A ; Frith, K ; Gray, PE ; Hu, H ; Hsu, D ; Chung, CWT ; Hodel, AW ; Trapani, JA ; Voskoboinik, I (AMER SOC HEMATOLOGY, 2023-05-11)
    Familial forms of the severe immunoregulatory disease hemophagocytic lymphohistiocytosis (HLH) arise from biallelic mutations in the PRF1, UNC13D, STXBP2, and STX11 genes. Early and accurate diagnosis of the disease is important to determine the most appropriate treatment option, including potentially curative stem cell transplantation. The diagnosis of familial HLH (FHL) is traditionally based on finding biallelic mutations in patients with HLH symptoms and reduced natural killer (NK)-cell cytotoxicity. However, patients often have a low NK-cell count or receive immunosuppressive therapies that may render the NK-cell cytotoxicity assay unreliable. Furthermore, to fully understand the nature of a disease it is critical to directly assess the effect of mutations on cellular function; this will help to avoid instances in which carriers of innocuous mutations may be recommended for invasive procedures including transplantation. To overcome this diagnostic problem, we have developed a rapid and robust method that takes advantage of the functional equivalence of the human and mouse orthologues of PRF1, UNC13D, STX11, and STXBP2 proteins. By knocking out endogenous mouse genes in CD8+ T cells and simultaneously replacing them with their mutated human orthologues, we can accurately assess the effect of mutations on cell function. The wide dynamic range of this novel system allowed us to understand the basis of, otherwise cryptic, cases of FHL or HLH and, in some instances, to demonstrate that previously reported mutations are unlikely to cause FHL. This novel approach provides valuable new information to enable more accurate diagnosis and treatment of patients with HLH or FHL who inherit mutations of undetermined pathogenicity.
  • Item
    No Preview Available
    Fragment-based and structure-guided discovery of perforin inhibitors
    Jose, J ; Law, RHP ; Leung, EWW ; Wai, DCC ; Akhlaghi, H ; Chandrashekaran, IR ; Caradoc-Davies, TT ; Voskoboinik, I ; Feutrill, J ; Middlemiss, D ; Jeevarajah, D ; Bashtannyk-Puhalovich, T ; Giddens, AC ; Lee, TW ; Jamieson, SMF ; Trapani, JA ; Whisstock, JC ; Spicer, JA ; Norton, RS (ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER, 2023-12-05)
    Perforin is a pore-forming protein whose normal function enables cytotoxic T and natural killer (NK) cells to kill virus-infected and transformed cells. Conversely, unwanted perforin activity can also result in auto-immune attack, graft rejection and aberrant responses to pathogens. Perforin is critical for the function of the granule exocytosis cell death pathway and is therefore a target for drug development. In this study, by screening a fragment library using NMR and surface plasmon resonance, we identified 4,4-diaminodiphenyl sulfone (dapsone) as a perforin ligand. We also found that dapsone has modest (mM) inhibitory activity of perforin lytic activity in a red blood cell lysis assay in vitro. Sequential modification of this lead fragment, guided by structural knowledge of the ligand binding site and binding pose, and supported by SPR and ligand-detected 19F NMR, enabled the design of nanomolar inhibitors of the cytolytic activity of intact NK cells against various tumour cell targets. Interestingly, the ligands we developed were largely inert with respect to direct perforin-mediated red blood cell lysis but were very potent in the context of perforin's action on delivering granzymes in the immune synapse, the context in which it functions physiologically. Our work indicates that a fragment-based, structure-guided drug discovery strategy can be used to identify novel ligands that bind perforin. Moreover, these molecules have superior physicochemical properties and solubility compared to previous generations of perforin ligands.
  • Item
    Thumbnail Image
    Small Molecule Inhibitors of Lymphocyte Perforin as Focused Immunosuppressants for Infection and Autoimmunity
    Spicer, JA ; Huttunen, KM ; Jose, J ; Dimitrov, I ; Akhlaghi, H ; Sutton, VR ; Voskoboinik, I ; Trapani, J (AMER CHEMICAL SOC, 2022-11-10)
    New drugs that precisely target the immune mechanisms critical for cytotoxic T lymphocyte (CTL) and natural killer (NK) cell driven pathologies are desperately needed. In this perspective, we explore the cytolytic protein perforin as a target for therapeutic intervention. Perforin plays an indispensable role in CTL/NK killing and controls a range of immune pathologies, while being encoded by a single copy gene with no redundancy of function. An immunosuppressant targeting this protein would provide the first-ever therapy focused specifically on one of the principal cell death pathways contributing to allotransplant rejection and underpinning multiple autoimmune and postinfectious diseases. No drugs that selectively block perforin-dependent cell death are currently in clinical use, so this perspective will review published novel small molecule inhibitors, concluding with in vivo proof-of-concept experiments performed in mouse models of perforin-mediated immune pathologies that provide a potential pathway toward a clinically useful therapeutic agent.
  • Item
    No Preview Available
    Severely impaired CTL killing is a feature of the neurological disorder Niemann-Pick disease type C1
    Castiblanco, D ; Rudd-Schmidt, JA ; Noori, T ; Sutton, VR ; Hung, YH ; Flinsenberg, TWH ; Hodel, AW ; Young, ND ; Smith, N ; Bratkovic, D ; Peters, H ; Walterfang, M ; Trapani, JA ; Brennan, AJ ; Voskoboinik, I (AMER SOC HEMATOLOGY, 2022-03-24)
    Niemann-Pick disease type C1 (NP-C1) is a rare lysosomal storage disorder resulting from mutations in an endolysosomal cholesterol transporter, NPC1. Despite typically presenting with pronounced neurological manifestations, NP-C1 also resembles long-term congenital immunodeficiencies that arise from impairment of cytotoxic T lymphocyte (CTL) effector function. CTLs kill their targets through exocytosis of the contents of lysosome-like secretory cytotoxic granules (CGs) that store and ultimately release the essential pore-forming protein perforin and proapoptotic serine proteases, granzymes, into the synapse formed between the CTL and target cell. We discovered that NPC1 deficiency increases CG lipid burden, impairs autophagic flux through stalled trafficking of the transcription factor EB (TFEB), and dramatically reduces CTL cytotoxicity. Using a variety of immunological and cell biological techniques, we found that the cytotoxic defect arises specifically from impaired perforin pore formation. We demonstrated defects of CTL function of varying severity in patients with NP-C1, with the greatest losses of function associated with the most florid and/or earliest disease presentations. Remarkably, perforin function and CTL cytotoxicity were restored in vitro by promoting lipid clearance with therapeutic 2-hydroxypropyl-β-cyclodextrin; however, restoration of autophagy through TFEB overexpression was ineffective. Overall, our study revealed that NPC1 deficiency has a deleterious impact on CTL (but not natural killer cell) cytotoxicity that, in the long term, may predispose patients with NP-C1 to atypical infections and impaired immune surveillance more generally.
  • Item
    No Preview Available
    A cell-based functional assay that accurately links genotype to phenotype in familial HLH.
    Noori, T ; Rudd-Schmidt, JA ; Kane, A ; Frith, K ; Gray, PE ; Hu, H ; Hsu, D ; Chung, CWT ; Hodel, AW ; Trapani, JA ; Voskoboinik, I (American Society of Hematology, 2023-05-11)
    Familial forms of the severe immunoregulatory disease hemophagocytic lymphohistiocytosis (HLH) arise from biallelic mutations in the PRF1, UNC13D, STXBP2, and STX11 genes. Early and accurate diagnosis of the disease is important to determine the most appropriate treatment option, including potentially curative stem cell transplantation. The diagnosis of familial HLH (FHL) is traditionally based on finding biallelic mutations in patients with HLH symptoms and reduced natural killer (NK)-cell cytotoxicity. However, patients often have a low NK-cell count or receive immunosuppressive therapies that may render the NK-cell cytotoxicity assay unreliable. Furthermore, to fully understand the nature of a disease it is critical to directly assess the effect of mutations on cellular function; this will help to avoid instances in which carriers of innocuous mutations may be recommended for invasive procedures including transplantation. To overcome this diagnostic problem, we have developed a rapid and robust method that takes advantage of the functional equivalence of the human and mouse orthologues of PRF1, UNC13D, STX11, and STXBP2 proteins. By knocking out endogenous mouse genes in CD8+ T cells and simultaneously replacing them with their mutated human orthologues, we can accurately assess the effect of mutations on cell function. The wide dynamic range of this novel system allowed us to understand the basis of, otherwise cryptic, cases of FHL or HLH and, in some instances, to demonstrate that previously reported mutations are unlikely to cause FHL. This novel approach provides valuable new information to enable more accurate diagnosis and treatment of patients with HLH or FHL who inherit mutations of undetermined pathogenicity.
  • Item
    Thumbnail Image
    ALFA-PRF: a novel approach to detect murine perforin release from CTLs into the immune synapse
    Rudd-Schmidt, JA ; Laine, RF ; Noori, T ; Brennan, AJ ; Voskoboinik, I (FRONTIERS MEDIA SA, 2022-12-22)
    When killing through the granule exocytosis pathway, cytotoxic lymphocytes release key effector molecules into the immune synapse, perforin and granzymes, to initiate target cell killing. The pore-forming perforin is essential for the function of cytotoxic lymphocytes, as its pores disrupt the target cell membrane and allow diffusion of pro-apoptotic serine proteases, granzyme, into the target cell, where they initiate various cell death cascades. Unlike human perforin, the detection of its murine counterpart in a live cell system has been problematic due its relatively low expression level and the lack of sensitive antibodies. The lack of a suitable methodology to visualise murine perforin secretion into the synapse hinders the study of the cytotoxic lymphocyte secretory machinery in murine models of human disease. Here, we describe a novel recombinant technology, whereby a short ALFA-tag sequence has been fused with the amino-terminus of a mature murine perforin, and this allowed its detection by the highly specific FluoTag®-X2 anti-ALFA nanobodies using both Total Internal Reflection Fluorescence (TIRF) microscopy of an artificial synapse, and confocal microscopy of the physiological immune synapse with a target cell. This methodology can have broad application in the field of cytotoxic lymphocyte biology and for the many models of human disease.
  • Item
    Thumbnail Image
    The pore conformation of lymphocyte perforin
    Ivanova, ME ; Lukoyanova, N ; Malhotra, S ; Topf, M ; Trapani, JA ; Voskoboinik, I ; Saibil, HR (AMER ASSOC ADVANCEMENT SCIENCE, 2022-02)
    Perforin is a pore-forming protein that facilitates rapid killing of pathogen-infected or cancerous cells by the immune system. Perforin is released from cytotoxic lymphocytes, together with proapoptotic granzymes, to bind to a target cell membrane where it oligomerizes and forms pores. The pores allow granzyme entry, which rapidly triggers the apoptotic death of the target cell. Here, we present a 4-Å resolution cryo-electron microscopy structure of the perforin pore, revealing previously unidentified inter- and intramolecular interactions stabilizing the assembly. During pore formation, the helix-turn-helix motif moves away from the bend in the central β sheet to form an intermolecular contact. Cryo-electron tomography shows that prepores form on the membrane surface with minimal conformational changes. Our findings suggest the sequence of conformational changes underlying oligomerization and membrane insertion, and explain how several pathogenic mutations affect function.
  • Item
    Thumbnail Image
    Serglycin determines secretory granule repertoire and regulates natural killer cell and cytotoxic T lymphocyte cytotoxicity
    Sutton, VR ; Brennan, AJ ; Ellis, S ; Danne, J ; Thia, K ; Jenkins, MR ; Voskoboinik, I ; Pejler, G ; Johnstone, RW ; Andrews, DM ; Trapani, JA (WILEY, 2016-03)
    The anionic proteoglycan serglycin is a major constituent of secretory granules in cytotoxic T lymphocyte (CTL)/natural killer (NK) cells, and is proposed to promote the safe storage of the mostly cationic granule toxins, granzymes and perforin. Despite the extensive defects of mast cell function reported in serglycin gene-disrupted mice, no comprehensive study of physiologically relevant CTL/NK cell populations has been reported. We show that the cytotoxicity of serglycin-deficient CTL and NK cells is severely compromised but can be partly compensated in both cell types when they become activated. Reduced intracellular granzyme B levels were noted, particularly in CD27(+) CD11b(+) mature NK cells, whereas serglycin(-/-) TCR-transgenic (OTI) CD8 T cells also had reduced perforin stores. Culture supernatants from serglycin(-/-) OTI T cells and interleukin-2-activated NK contained increased granzyme B, linking reduced storage with heightened export. By contrast, granzyme A was not significantly reduced in cells lacking serglycin, indicating differentially regulated trafficking and/or storage for the two granzymes. A quantitative analysis of different granule classes by transmission electronmicroscopy showed a selective loss of dense-core granules in serglycin(-/-) CD8(+) CTLs, although other granule types were maintained quantitatively. The findings of the present study show that serglycin plays a critical role in the maturation of dense-core cytotoxic granules in cytotoxic lymphocytes and the trafficking and storage of perforin and granzyme B, whereas granzyme A is unaffected. The skewed retention of cytotoxic effector molecules markedly reduces CTL/NK cell cytotoxicity, although this is partly compensated for as a result of activating the cells by physiological means.
  • Item
    Thumbnail Image
    CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity
    Burr, ML ; Sparbier, CE ; Chan, Y-C ; Williamson, JC ; Woods, K ; Beavis, PA ; Lam, EYN ; Henderson, MA ; Bell, CC ; Stolzenburg, S ; Gilan, O ; Bloor, S ; Noori, T ; Morgens, DW ; Bassik, MC ; Neeson, PJ ; Behren, A ; Darcy, PK ; Dawson, S-J ; Voskoboinik, I ; Trapani, JA ; Cebon, J ; Lehner, PJ ; Dawson, MA (NATURE RESEARCH, 2017-09-07)
    Cancer cells exploit the expression of the programmed death-1 (PD-1) ligand 1 (PD-L1) to subvert T-cell-mediated immunosurveillance. The success of therapies that disrupt PD-L1-mediated tumour tolerance has highlighted the need to understand the molecular regulation of PD-L1 expression. Here we identify the uncharacterized protein CMTM6 as a critical regulator of PD-L1 in a broad range of cancer cells, by using a genome-wide CRISPR-Cas9 screen. CMTM6 is a ubiquitously expressed protein that binds PD-L1 and maintains its cell surface expression. CMTM6 is not required for PD-L1 maturation but co-localizes with PD-L1 at the plasma membrane and in recycling endosomes, where it prevents PD-L1 from being targeted for lysosome-mediated degradation. Using a quantitative approach to profile the entire plasma membrane proteome, we find that CMTM6 displays specificity for PD-L1. Notably, CMTM6 depletion decreases PD-L1 without compromising cell surface expression of MHC class I. CMTM6 depletion, via the reduction of PD-L1, significantly alleviates the suppression of tumour-specific T cell activity in vitro and in vivo. These findings provide insights into the biology of PD-L1 regulation, identify a previously unrecognized master regulator of this critical immune checkpoint and highlight a potential therapeutic target to overcome immune evasion by tumour cells.
  • Item
    Thumbnail Image
    Dilemmas in the diagnosis and pathogenesis of atypical late-onset familial haemophagocytic lymphohistiocytosis
    Minson, A ; Voskoboinik, I ; Grigg, A (WILEY, 2021)
    OBJECTIVES: A congenital loss of cytotoxic lymphocyte activity leads to a potentially fatal immune dysregulation, familial haemophagocytic lymphohistiocytosis. Until recently, this disease was uniformly associated with infants or very young children, but it appears now that the onset may be delayed for decades. As a result, some adults are being mis- or under-diagnosed because of their 'atypical' symptoms that are not recognised as immunodeficiency. The clinical picture and histopathology can overlap with those of haematologic malignancy, further complicating the diagnostic thought process. The spectrum of atypical symptoms is poorly defined, and therefore, it is important to describe these cases and the attendant immunological and cellular changes associated with familial haemophagocytic lymphohistiocytosis, in order to improve diagnosis and prevent unintended consequences of symptomatic therapies. METHODS: A 45-year-old patient presented with suspected T-cell lymphoma and was treated with combination chemotherapy (cyclophosphamide, doxorubicin, vincristine, prednisolone) supplemented with granulocyte-colony stimulating factor (G-CSF). To mobilise stem cells for autologous transplantation, the patient was then treated with high-dose G-CSF and rapidly developed haemophagocytic lymphohistiocytosis. Symptoms resolved temporarily with intensive immunosuppression with alemtuzumab and durably with a subsequent allograft. RESULTS: The patient was found to be a carrier of bi-allelic mutations in the STXBP2 protein that is essential for cytotoxic lymphocyte function, and the initial diagnosis has been revised as familial haemophagocytic lymphohistiocytosis. CONCLUSION: This case highlights the difficulty in distinguishing atypical/late-onset familial haemophagocytic lymphohistiocytosis from a malignant process as well as a possible exacerbation of the disease with G-CSF therapy.