Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 98
  • Item
    Thumbnail Image
    Correction: Polygenic risk modeling for prediction of epithelial ovarian cancer risk.
    Dareng, EO ; Tyrer, JP ; Barnes, DR ; Jones, MR ; Yang, X ; Aben, KKH ; Adank, MA ; Agata, S ; Andrulis, IL ; Anton-Culver, H ; Antonenkova, NN ; Aravantinos, G ; Arun, BK ; Augustinsson, A ; Balmaña, J ; Bandera, EV ; Barkardottir, RB ; Barrowdale, D ; Beckmann, MW ; Beeghly-Fadiel, A ; Benitez, J ; Bermisheva, M ; Bernardini, MQ ; Bjorge, L ; Black, A ; Bogdanova, NV ; Bonanni, B ; Borg, A ; Brenton, JD ; Budzilowska, A ; Butzow, R ; Buys, SS ; Cai, H ; Caligo, MA ; Campbell, I ; Cannioto, R ; Cassingham, H ; Chang-Claude, J ; Chanock, SJ ; Chen, K ; Chiew, Y-E ; Chung, WK ; Claes, KBM ; Colonna, S ; GEMO Study Collaborators, ; GC-HBOC Study Collaborators, ; EMBRACE Collaborators, ; Cook, LS ; Couch, FJ ; Daly, MB ; Dao, F ; Davies, E ; de la Hoya, M ; de Putter, R ; Dennis, J ; DePersia, A ; Devilee, P ; Diez, O ; Ding, YC ; Doherty, JA ; Domchek, SM ; Dörk, T ; du Bois, A ; Dürst, M ; Eccles, DM ; Eliassen, HA ; Engel, C ; Evans, GD ; Fasching, PA ; Flanagan, JM ; Fortner, RT ; Machackova, E ; Friedman, E ; Ganz, PA ; Garber, J ; Gensini, F ; Giles, GG ; Glendon, G ; Godwin, AK ; Goodman, MT ; Greene, MH ; Gronwald, J ; OPAL Study Group, ; AOCS Group, ; Hahnen, E ; Haiman, CA ; Håkansson, N ; Hamann, U ; Hansen, TVO ; Harris, HR ; Hartman, M ; Heitz, F ; Hildebrandt, MAT ; Høgdall, E ; Høgdall, CK ; Hopper, JL ; Huang, R-Y ; Huff, C ; Hulick, PJ ; Huntsman, DG ; Imyanitov, EN ; KConFab Investigators, ; HEBON Investigators, ; Isaacs, C ; Jakubowska, A ; James, PA ; Janavicius, R ; Jensen, A ; Johannsson, OT ; John, EM ; Jones, ME ; Kang, D ; Karlan, BY ; Karnezis, A ; Kelemen, LE ; Khusnutdinova, E ; Kiemeney, LA ; Kim, B-G ; Kjaer, SK ; Komenaka, I ; Kupryjanczyk, J ; Kurian, AW ; Kwong, A ; Lambrechts, D ; Larson, MC ; Lazaro, C ; Le, ND ; Leslie, G ; Lester, J ; Lesueur, F ; Levine, DA ; Li, L ; Li, J ; Loud, JT ; Lu, KH ; Lubiński, J ; Mai, PL ; Manoukian, S ; Marks, JR ; Matsuno, RK ; Matsuo, K ; May, T ; McGuffog, L ; McLaughlin, JR ; McNeish, IA ; Mebirouk, N ; Menon, U ; Miller, A ; Milne, RL ; Minlikeeva, A ; Modugno, F ; Montagna, M ; Moysich, KB ; Munro, E ; Nathanson, KL ; Neuhausen, SL ; Nevanlinna, H ; Yie, JNY ; Nielsen, HR ; Nielsen, FC ; Nikitina-Zake, L ; Odunsi, K ; Offit, K ; Olah, E ; Olbrecht, S ; Olopade, OI ; Olson, SH ; Olsson, H ; Osorio, A ; Papi, L ; Park, SK ; Parsons, MT ; Pathak, H ; Pedersen, IS ; Peixoto, A ; Pejovic, T ; Perez-Segura, P ; Permuth, JB ; Peshkin, B ; Peterlongo, P ; Piskorz, A ; Prokofyeva, D ; Radice, P ; Rantala, J ; Riggan, MJ ; Risch, HA ; Rodriguez-Antona, C ; Ross, E ; Rossing, MA ; Runnebaum, I ; Sandler, DP ; Santamariña, M ; Soucy, P ; Schmutzler, RK ; Setiawan, VW ; Shan, K ; Sieh, W ; Simard, J ; Singer, CF ; Sokolenko, AP ; Song, H ; Southey, MC ; Steed, H ; Stoppa-Lyonnet, D ; Sutphen, R ; Swerdlow, AJ ; Tan, YY ; Teixeira, MR ; Teo, SH ; Terry, KL ; Terry, MB ; OCAC Consortium, ; CIMBA Consortium, ; Thomassen, M ; Thompson, PJ ; Thomsen, LCV ; Thull, DL ; Tischkowitz, M ; Titus, L ; Toland, AE ; Torres, D ; Trabert, B ; Travis, R ; Tung, N ; Tworoger, SS ; Valen, E ; van Altena, AM ; van der Hout, AH ; Van Nieuwenhuysen, E ; van Rensburg, EJ ; Vega, A ; Edwards, DV ; Vierkant, RA ; Wang, F ; Wappenschmidt, B ; Webb, PM ; Weinberg, CR ; Weitzel, JN ; Wentzensen, N ; White, E ; Whittemore, AS ; Winham, SJ ; Wolk, A ; Woo, Y-L ; Wu, AH ; Yan, L ; Yannoukakos, D ; Zavaglia, KM ; Zheng, W ; Ziogas, A ; Zorn, KK ; Kleibl, Z ; Easton, D ; Lawrenson, K ; DeFazio, A ; Sellers, TA ; Ramus, SJ ; Pearce, CL ; Monteiro, AN ; Cunningham, J ; Goode, EL ; Schildkraut, JM ; Berchuck, A ; Chenevix-Trench, G ; Gayther, SA ; Antoniou, AC ; Pharoah, PDP (Springer Science and Business Media LLC, 2022-05)
  • Item
    Thumbnail Image
    Polygenic risk modeling for prediction of epithelial ovarian cancer risk
    Dareng, EO ; Tyrer, JP ; Barnes, DR ; Jones, MR ; Yang, X ; Aben, KKH ; Adank, MA ; Agata, S ; Andrulis, IL ; Anton-Culver, H ; Antonenkova, NN ; Aravantinos, G ; Arun, BK ; Augustinsson, A ; Balmana, J ; Bandera, E ; Barkardottir, RB ; Barrowdale, D ; Beckmann, MW ; Beeghly-Fadiel, A ; Benitez, J ; Bermisheva, M ; Bernardini, MQ ; Bjorge, L ; Black, A ; Bogdanova, N ; Bonanni, B ; Borg, A ; Brenton, JD ; Budzilowska, A ; Butzow, R ; Buys, SS ; Cai, H ; Caligo, MA ; Campbell, I ; Cannioto, R ; Cassingham, H ; Chang-Claude, J ; Chanock, SJ ; Chen, K ; Chiew, Y-E ; Chung, WK ; Claes, KBM ; Colonna, S ; Cook, LS ; Couch, FJ ; Daly, MB ; Dao, F ; Davies, E ; de la Hoya, M ; de Putter, R ; Dennis, J ; DePersia, A ; Devilee, P ; Diez, O ; Ding, YC ; Doherty, JA ; Domchek, SM ; Dork, T ; du Bois, A ; Durst, M ; Eccles, DM ; Eliassen, HA ; Engel, C ; Evans, GD ; Fasching, PA ; Flanagan, JM ; Fortner, R ; Machackova, E ; Friedman, E ; Ganz, PA ; Garber, J ; Gensini, F ; Giles, GG ; Glendon, G ; Godwin, AK ; Goodman, MT ; Greene, MH ; Gronwald, J ; Group, OS ; AOCSGroup, ; Hahnen, E ; Haiman, CA ; Hakansson, N ; Hamann, U ; Hansen, TVO ; Harris, HR ; Hartman, M ; Heitz, F ; Hildebrandt, MAT ; Hogdall, E ; Hogdall, CK ; Hopper, JL ; Huang, R-Y ; Huff, C ; Hulick, PJ ; Huntsman, DG ; Imyanitov, EN ; Isaacs, C ; Jakubowska, A ; James, PA ; Janavicius, R ; Jensen, A ; Johannsson, OT ; John, EM ; Jones, ME ; Kang, D ; Karlan, BY ; Karnezis, A ; Kelemen, LE ; Khusnutdinova, E ; Kiemeney, LA ; Kim, B-G ; Kjaer, SK ; Komenaka, I ; Kupryjanczyk, J ; Kurian, AW ; Kwong, A ; Lambrechts, D ; Larson, MC ; Lazaro, C ; Le, ND ; Leslie, G ; Lester, J ; Lesueur, F ; Levine, DA ; Li, L ; Li, J ; Loud, JT ; Lu, KH ; Mai, PL ; Manoukian, S ; Marks, JR ; KimMatsuno, R ; Matsuo, K ; May, T ; McGuffog, L ; McLaughlin, JR ; McNeish, IA ; Mebirouk, N ; Menon, U ; Miller, A ; Milne, RL ; Minlikeeva, A ; Modugno, F ; Montagna, M ; Moysich, KB ; Munro, E ; Nathanson, KL ; Neuhausen, SL ; Nevanlinna, H ; Yie, JNY ; Nielsen, HR ; Nielsen, FC ; Nikitina-Zake, L ; Odunsi, K ; Offit, K ; Olah, E ; Olbrecht, S ; Olopade, O ; Olson, SH ; Olsson, H ; Osorio, A ; Papi, L ; Park, SK ; Parsons, MT ; Pathak, H ; Pedersen, IS ; Peixoto, A ; Pejovic, T ; Perez-Segura, P ; Permuth, JB ; Peshkin, B ; Peterlongo, P ; Piskorz, A ; Prokofyeva, D ; Radice, P ; Rantala, J ; Riggan, MJ ; Risch, HA ; Rodriguez-Antona, C ; Ross, E ; Rossing, MA ; Runnebaum, I ; Sandler, DP ; Santamarina, M ; Soucy, P ; Schmutzler, RK ; Setiawan, VW ; Shan, K ; Sieh, W ; Simard, J ; Singer, CF ; Sokolenko, AP ; Song, H ; Southey, MC ; Steed, H ; Stoppa-Lyonnet, D ; Sutphen, R ; Swerdlow, AJ ; Tan, YY ; Teixeira, MR ; Teo, SH ; Terry, KL ; BethTerry, M ; Thomassen, M ; Thompson, PJ ; Thomsen, LCV ; Thull, DL ; Tischkowitz, M ; Titus, L ; Toland, AE ; Torres, D ; Trabert, B ; Travis, R ; Tung, N ; Tworoger, SS ; Valen, E ; van Altena, AM ; van der Hout, AH ; Nieuwenhuysen, E ; van Rensburg, EJ ; Vega, A ; Edwards, DV ; Vierkant, RA ; Wang, F ; Wappenschmidt, B ; Webb, PM ; Weinberg, CR ; Weitzel, JN ; Wentzensen, N ; White, E ; Whittemore, AS ; Winham, SJ ; Wolk, A ; Woo, Y-L ; Wu, AH ; Yan, L ; Yannoukakos, D ; Zavaglia, KM ; Zheng, W ; Ziogas, A ; Zorn, KK ; Kleibl, Z ; Easton, D ; Lawrenson, K ; DeFazio, A ; Sellers, TA ; Ramus, SJ ; Pearce, CL ; Monteiro, AN ; Cunningham, J ; Goode, EL ; Schildkraut, JM ; Berchuck, A ; Chenevix-Trench, G ; Gayther, SA ; Antoniou, AC ; Pharoah, PDP (SPRINGERNATURE, 2022-01-14)
    Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, "select and shrink for summary statistics" (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38 (95% CI: 1.28-1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08-1.19, AUC: 0.538) in women of East Asian ancestries; 1.38 (95% CI: 1.21-1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI: 1.29-1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35-1.64, AUC: 0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.
  • Item
    Thumbnail Image
    Common variants in breast cancer risk loci predispose to distinct tumor subtypes
    Ahearn, TU ; Zhang, H ; Michailidou, K ; Milne, RL ; Bolla, MK ; Dennis, J ; Dunning, AM ; Lush, M ; Wang, Q ; Andrulis, IL ; Anton-Culver, H ; Arndt, V ; Aronson, KJ ; Auer, PL ; Augustinsson, A ; Baten, A ; Becher, H ; Behrens, S ; Benitez, J ; Bermisheva, M ; Blomqvist, C ; Bojesen, SE ; Bonanni, B ; Borresen-Dale, A-L ; Brauch, H ; Brenner, H ; Brooks-Wilson, A ; Bruening, T ; Burwinkel, B ; Buys, SS ; Canzian, F ; Castelao, JE ; Chang-Claude, J ; Chanock, SJ ; Chenevix-Trench, G ; Clarke, CL ; Collee, JM ; Cox, A ; Cross, SS ; Czene, K ; Daly, MB ; Devilee, P ; Dork, T ; Dwek, M ; Eccles, DM ; Evans, DG ; Fasching, PA ; Figueroa, J ; Floris, G ; Gago-Dominguez, M ; Gapstur, SM ; Garcia-Saenz, JA ; Gaudet, MM ; Giles, GG ; Goldberg, MS ; Gonzalez-Neira, A ; Alnaes, GIG ; Grip, M ; Guenel, P ; Haiman, CA ; Hall, P ; Hamann, U ; Harkness, EF ; Heemskerk-Gerritsen, BAM ; Holleczek, B ; Hollestelle, A ; Hooning, MJ ; Hoover, RN ; Hopper, JL ; Howell, A ; Jakimovska, M ; Jakubowska, A ; John, EM ; Jones, ME ; Jung, A ; Kaaks, R ; Kauppila, S ; Keeman, R ; Khusnutdinova, E ; Kitahara, CM ; Ko, Y-D ; Koutros, S ; Kristensen, VN ; Kruger, U ; Kubelka-Sabit, K ; Kurian, AW ; Kyriacou, K ; Lambrechts, D ; Lee, DG ; Lindblom, A ; Linet, M ; Lissowska, J ; Llaneza, A ; Lo, W-Y ; MacInnis, RJ ; Mannermaa, A ; Manoochehri, M ; Margolin, S ; Martinez, ME ; McLean, C ; Meindl, A ; Menon, U ; Nevanlinna, H ; Newman, WG ; Nodora, J ; Offit, K ; Olsson, H ; Orr, N ; Park-Simon, T-W ; Patel, A ; Peto, J ; Pita, G ; Plaseska-Karanfilska, D ; Prentice, R ; Punie, K ; Pylkas, K ; Radice, P ; Rennert, G ; Romero, A ; Ruediger, T ; Saloustros, E ; Sampson, S ; Sandler, DP ; Sawyer, EJ ; Schmutzler, RK ; Schoemaker, MJ ; Schottker, B ; Sherman, ME ; Shu, X-O ; Smichkoska, S ; Southey, MC ; Spinelli, JJ ; Swerdlow, AJ ; Tamimi, RM ; Tapper, WJ ; Taylor, JA ; Teras, LR ; Terry, MB ; Torres, D ; Troester, MA ; Vachon, CM ; van Deurzen, CHM ; van Veen, EM ; Wagner, P ; Weinberg, CR ; Wendt, C ; Wesseling, J ; Winqvist, R ; Wolk, A ; Yang, XR ; Zheng, W ; Couch, FJ ; Simard, J ; Kraft, P ; Easton, DF ; Pharoah, PDP ; Schmidt, MK ; Garcia-Closas, M ; Chatterjee, N (BMC, 2022-01-04)
    BACKGROUND: Genome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER) status, but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear. METHODS: Among 106,571 invasive breast cancer cases and 95,762 controls of European ancestry with data on 173 breast cancer variants identified in previous GWAS, we used novel two-stage polytomous logistic regression models to evaluate variants in relation to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes. RESULTS: Eighty-five of 173 variants were associated with at least one tumor feature (false discovery rate < 5%), most commonly ER and grade, followed by PR and HER2. Models for intrinsic-like subtypes found nearly all of these variants (83 of 85) associated at p < 0.05 with risk for at least one luminal-like subtype, and approximately half (41 of 85) of the variants were associated with risk of at least one non-luminal subtype, including 32 variants associated with triple-negative (TN) disease. Ten variants were associated with risk of all subtypes in different magnitude. Five variants were associated with risk of luminal A-like and TN subtypes in opposite directions. CONCLUSION: This report demonstrates a high level of complexity in the etiology heterogeneity of breast cancer susceptibility variants and can inform investigations of subtype-specific risk prediction.
  • Item
    Thumbnail Image
    BRCA1 polymorphisms
    Campbell, IG ; Schroff, R ; Englefield, P ; Eccles, DM (CHURCHILL LIVINGSTONE, 1997-01-01)
  • Item
    Thumbnail Image
    TP53 intron 6 polymorphism and the risk of ovarian and breast cancer
    Mavridou, D ; Gornall, R ; Campbell, IG ; Eccles, DM (CHURCHILL LIVINGSTONE, 1998-02-01)
  • Item
    Thumbnail Image
    MDM2 OVEREXPRESSION IS RARE IN OVARIAN-CARCINOMA IRRESPECTIVE OF TP53 MUTATION STATUS
    FOULKES, WD ; STAMP, GWH ; AFZAL, S ; LALANI, N ; MCFARLANE, CP ; TROWSDALE, J ; CAMPBELL, IG (STOCKTON PRESS, 1995-10-01)
    Somatic mutations in TP53 are seen in many human cancers. In addition, the protein product of the wild-type TP53 can be sequestered by the protein MDM2 (murine double minute 2). This protein is commonly overexpressed in human sarcomas and gliomas, usually as a result of gene amplification. In this study, 43 ovarian carcinomas (OCs) were analysed for aberrations in the TP53 gene by immunohistochemistry (IHC), loss of heterozygosity (LOH) or mutation analysis. The MDM2 gene and its product was studied by Southern blotting and IHC. Over 50% of the OCs studied showed mutations in TP53 by either direct sequencing (19/36, 53%), positive IHC (23,43, 53%) or both, whereas 0/32 had amplification of MDM2 and only 1/37 tumours had positive IHC using the anti-MDM2 antibody IF-2. The solitary example of positive IHC in this series was seen in a mixed müllerian tumour with sarcomatous differentiation and was not accompanied by MDM2 DNA amplification. These results support previous data showing that around 50% of OCs have mutations in TP53 and in addition, suggest that MDM2 is not amplified in OC, but the presence of sarcomatous features in mixed müllerian tumours may result in positive immunohistochemistry with IF-2.
  • Item
    Thumbnail Image
    LOSS OF HETEROZYGOSITY AND AMPLIFICATION ON CHROMOSOME-11Q IN HUMAN OVARIAN-CANCER
    FOULKES, WD ; CAMPBELL, IG ; STAMP, GWH ; TROWSDALE, J (STOCKTON PRESS, 1993-02-01)
    The 11q13 chromosomal region encodes oncogenes relevant to a variety of human cancers as well as a tumour suppressor gene implicated in multiple endocrine neoplasia type 1. In addition, high affinity folate receptor (FOLR1), which maps to 11q13.3-13.5, is expressed at an elevated level on the surface of over 80% of nonmucinous epithelial ovarian cancers. Further telomeric, 11q breakpoints are found in many cancers. We studied the involvement of 11q markers in ovarian cancer by looking for tumour-specific loss of heterozygosity (LOH), as well as amplification or rearrangements that might explain the overexpression of FOLR1. Twenty eight epithelial ovarian cancers, along with lymphocyte DNA from the same individual were used for Southern blotting with polymorphic probes from 11q. PCR primers from 11q23.3 were also used. The 11q13 band was amplified in four out of 28 cancers. The amplicon included the probe D11S146 as well as FGF3 (formerly INT2) and FOLR1 in one out of these four cases, thus crossing the bcl1 translocation breakpoint. LOH was seen in three out of 16 cases with FGF3 (11q13). A much higher frequency of LOH (8/12) was found at 11q23.3-qter, implying the presence of a tumour suppressor gene in this region.
  • Item
    Thumbnail Image
    LOSS OF HETEROZYGOSITY ON CHROMOSOME-22 IN OVARIAN-CARCINOMA IS DISTAL TO AND IS NOT ACCOMPANIED BY MUTATIONS IN NF2 AT 22Q12
    ENGLEFIELD, P ; FOULKES, WD ; CAMPBELL, IG (STOCKTON PRESS, 1994-11-01)
    Frequent loss of heterozygosity (LOH) has been reported on 22q in ovarian carcinoma, implying the presence of a tumour-suppressor gene. The neurofibromatosis type 2 gene (NF2) at 22q12 is a plausible candidate. Analysis of 9 of the 17 exons of NF2 by single-strand conformational polymorphism (SSCP) in 67 ovarian carcinomas did not detect any somatic mutations, suggesting that NF2 is not involved in the pathogenesis of ovarian carcinoma. LOH data support this conclusion and that the putative tumour-suppressor gene lies distal to NF2, beyond D22S283.
  • Item
    Thumbnail Image
    BRCA1 mutations in southern England
    Eccles, DM ; Englefield, P ; Soulby, MA ; Campbell, IG (CHURCHILL LIVINGSTONE, 1998-06-01)
    If genetic testing for breast and ovarian cancer predisposition is to become available within a public health care system there needs to be a rational and cost-effective approach to mutation analysis. We have screened for BRCA1 mutations in 230 women with breast cancer, all from the Wessex region of southern England, in order to establish the parameters on which to base a cost-effective regional mutation analysis strategy. Truncating mutations were detected in 10/155 (6.5%) consecutive cases selected only for diagnosis under the age of 40 (nine of these ten women had a strong family history of breast or ovarian cancer), 3/61 (4.9%) bilateral-breast cancer cases (all three mutations occurring among women for whom the first cancer was diagnosed under 40 years) and 8/30 (26.6%) breast cancer cases presenting to the genetics clinic (for whom a strong family history of breast and/or ovarian cancer was present). Ten different mutations were detected in 17 families, but three of these accounted for 10/17 (59%) of the families. The cost of screening the population for mutations in the entire BRCA1 gene is unacceptably high. However, the cost of screening a carefully selected patient cohort is low, the risk of misinterpretation much less and the potential clinical benefits clearer.
  • Item
    Thumbnail Image
    Allele loss and mutation screen at the Peutz-Jeghers (LKB1) locus (19p13.3) in sporadic ovarian tumours
    Wang, ZJ ; Churchman, M ; Campbell, IG ; Xu, WH ; Yan, ZY ; McCluggage, WG ; Foulkes, WD ; Tomlinson, IPM (CHURCHILL LIVINGSTONE, 1999-04-01)
    Germline mutations in the LKB1 (STK11) gene (chromosome sub-band 19p13.3) cause characteristic hamartomas and pigmentation to develop in patients with Peutz-Jeghers syndrome. Peutz-Jeghers syndrome carries an overall risk of cancer that may be up to 20 times that of the general population and Peutz-Jeghers patients are at increased risk of benign and malignant ovarian tumours, particularly granulosa cell tumours. Loss of heterozygosity (allele loss, LOH) has been reported in about 50% of ovarian cancers on 19p13.3. LKB1 is therefore a candidate tumour suppressor gene for sporadic ovarian tumours. We found allele loss at the marker D19S886 (19p13.3) in 12 of 49 (24%) sporadic ovarian adenocarcinomas. Using SSCP analysis, we screened ten ovarian cancers with LOH, 35 other ovarian cancers and 12 granulosa cell tumours of the ovary for somatic mutations in LKB1. No variants were detected in any of the adenocarcinomas. Two mutations were detected in one of the granulosa cell tumours: a mis-sense mutation affecting the putative 'start' codon (ATG --> ACG, M1T); and a silent change in exon 7 (CTT --> CTA, leucine). Like BRCA1 and BRCA2, therefore, it appears that LKB1 mutations can cause ovarian tumours when present in the germline, but occur rarely in the soma. The allele loss on 19p13.3 in ovarian cancers almost certainly targets a different gene from LKB1.