Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    No Preview Available
    DNA methylation in ductal carcinoma in situ of the breast
    Pang, J-MB ; Dobrovic, A ; Fox, SB (BMC, 2013)
    Ductal carcinoma in situ (DCIS) is a non-obligate precursor lesion of invasive carcinoma of the breast. Current prognostic markers based on histopathological examination are unable to accurately predict which DCIS cases will progress to invasive carcinoma or recur after surgical excision. Epigenetic changes have been shown to be a significant driver of tumorigenesis, and DNA methylation of specific gene promoters provides predictive and prognostic markers in many types of cancer, including invasive breast cancer. In general, the spectrum of genes that are methylated in DCIS strongly resembles that seen in invasive ductal carcinoma. The identification of specific prognostic markers in DCIS remains elusive and awaits additional work investigating a large panel of methylatable genes by using sensitive and reproducible technologies. This review critically appraises the role of methylation in DCIS and its use as a biomarker.
  • Item
    Thumbnail Image
    A multisite blinded study for the detection of BRAF mutations in formalin-fixed, paraffin-embedded malignant melanoma
    Richter, A ; Grieu, F ; Carrello, A ; Amanuel, B ; Namdarian, K ; Rynska, A ; Lucas, A ; Michael, V ; Bell, A ; Fox, SB ; Hewitt, CA ; Do, H ; McArthur, GA ; Wong, SQ ; Dobrovic, A ; Iacopetta, B (NATURE PORTFOLIO, 2013-04-15)
    Melanoma patients with BRAF mutations respond to treatment with vemurafenib, thus creating a need for accurate testing of BRAF mutation status. We carried out a blinded study to evaluate various BRAF mutation testing methodologies in the clinical setting. Formalin-fixed, paraffin-embedded melanoma samples were macrodissected before screening for mutations using Sanger sequencing, single-strand conformation analysis (SSCA), high resolution melting analysis (HRM) and competitive allele-specific TaqMan® PCR (CAST-PCR). Concordance of 100% was observed between the Sanger sequencing, SSCA and HRM techniques. CAST-PCR gave rapid and accurate results for the common V600E and V600K mutations, however additional assays are required to detect rarer BRAF mutation types found in 3-4% of melanomas. HRM and SSCA followed by Sanger sequencing are effective two-step strategies for the detection of BRAF mutations in the clinical setting. CAST-PCR was useful for samples with low tumour purity and may also be a cost-effective and robust method for routine diagnostics.
  • Item
    Thumbnail Image
    Increased pathological complete response rate after a long-term neoadjuvant letrozole treatment in postmenopausal oestrogen and/or progesterone receptor-positive breast cancer
    Allevi, G ; Strina, C ; Andreis, D ; Zanoni, V ; Bazzola, L ; Bonardi, S ; Foroni, C ; Milani, M ; Cappelletti, MR ; Gussago, F ; Aguggini, S ; Giardini, R ; Martinotti, M ; Fox, SB ; Harris, AL ; Bottini, A ; Berruti, A ; Generali, D (NATURE PUBLISHING GROUP, 2013-04-30)
    BACKGROUND: The objective of this study was to determine the optimal scheduling of 2.5 mg daily letrozole in neoadjuvant breast cancer patients to obtain pathological complete response (pathCR) and assess Ki-67 expression as an early predictor of response. PATIENTS AND METHODS: This single institution study comprised 120 oestrogen receptor (ER)-positive postmenopausal women with primary breast cancer (clinical stage ≥ T2, N0-1), from three sequential cohorts (cohort A of 40, cohort B of 40 and cohort C of 40 patients, respectively) based on different duration of the neoadjuvant letrozole. Biological markers such as ER, progesterone receptor, HER2 and Ki-67 expression were tested at diagnosis and at definitive surgery. RESULTS: A total of 89 patients (75.4%) achieved an objective response with 44 (37.3%) clinical CRs and 45 (38.1%) partial responses. The clinical CRs were significantly observed in cohort C (23 out of 40 patients, 57.5%) and B (16 out of 38 patients, 42.1%) compared with cohort A (5 out of 40 patients, 12.5%) (P-value for trend <0.001). Letrozole induced a similar significant reduction in Ki-67 index after treatment in all cohorts. The pathCR rate was significantly more frequent in cohort C (7 out of 40 patients, 17.5%) than in cohort A (1 out of 40 patients, 2.5%) and B (2 out of 40 patients, 5.0%) (P-value for trend <0.04). CONCLUSION: One-year neoadjuvant letrozole therapy leads to a higher pathCR rate and may be the optimal length of drug exposure.
  • Item
    Thumbnail Image
    Triple Negative Breast Cancers Have a Reduced Expression of DNA Repair Genes
    Ribeiro, E ; Ganzinelli, M ; Andreis, D ; Bertoni, R ; Giardini, R ; Fox, SB ; Broggini, M ; Bottini, A ; Zanoni, V ; Bazzola, L ; Foroni, C ; Generali, D ; Damia, G ; Sobol, RW (PUBLIC LIBRARY SCIENCE, 2013-06-25)
    DNA repair is a key determinant in the cellular response to therapy and tumor repair status could play an important role in tailoring patient therapy. Our goal was to evaluate the mRNA of 13 genes involved in different DNA repair pathways (base excision, nucleotide excision, homologous recombination, and Fanconi anemia) in paraffin embedded samples of triple negative breast cancer (TNBC) compared to luminal A breast cancer (LABC). Most of the genes involved in nucleotide excision repair and Fanconi Anemia pathways, and CHK1 gene were significantly less expressed in TNBC than in LABC. PARP1 levels were higher in TNBC than in LABC. In univariate analysis high level of FANCA correlated with an increased overall survival and event free survival in TNBC; however multivariate analyses using Cox regression did not confirm FANCA as independent prognostic factor. These data support the evidence that TNBCs compared to LABCs harbour DNA repair defects.
  • Item
    Thumbnail Image
    HIF-1α stimulates aromatase expression driven by prostaglandin E2 in breast adipose stroma
    Samarajeewa, NU ; Yang, F ; Docanto, MM ; Sakurai, M ; McNamara, KM ; Sasano, H ; Fox, SB ; Simpson, ER ; Brown, KA (BIOMED CENTRAL LTD, 2013)
    INTRODUCTION: The majority of postmenopausal breast cancers are estrogen-dependent. Tumor-derived factors, such as prostaglandin E2 (PGE2), stimulate CREB1 binding to cAMP response elements (CREs) on aromatase promoter II (PII), leading to the increased expression of aromatase and biosynthesis of estrogens within human breast adipose stromal cells (ASCs). Hypoxia inducible factor-1α (HIF-1α), a key mediator of cellular adaptation to low oxygen levels, is emerging as a novel prognostic marker in breast cancer. We have identified the presence of a consensus HIF-1α binding motif overlapping with the proximal CRE of aromatase PII. However, the regulation of aromatase expression by HIF-1α in breast cancer has not been characterized. This study aimed to characterize the role of HIF-1α in the activation of aromatase PII. METHODS: HIF-1α expression and localization were examined in human breast ASCs using quantitative PCR (QPCR), Western blotting, immunofluorescence and high content screening. QPCR and tritiated water-release assays were performed to assess the effect of HIF-1α on aromatase expression and activity. Reporter assays and chromatin immunoprecipitation (ChIP) were performed to assess the effect of HIF-1α on PII activity and binding. Treatments included PGE2 or DMOG ((dimethyloxalglycine), HIF-1α stabilizer). Double immunohistochemistry for HIF-1α and aromatase was performed on tissues obtained from breast cancer and cancer-free patients. RESULTS: Results indicate that PGE2 increases HIF-1α transcript and protein expression, nuclear localization and binding to aromatase PII in human breast ASCs. Results also demonstrate that HIF-1α significantly increases PII activity, and aromatase transcript expression and activity, in the presence of DMOG and/or PGE2, and that HIF-1α and CREB1 act co-operatively on PII. There is a significant increase in HIF-1α positive ASCs in breast cancer patients compared to cancer-free women, and a positive association between HIF-1α and aromatase expression. CONCLUSIONS: This study is the first to identify HIF-1α as a modulator of PII-driven aromatase expression in human breast tumor-associated stroma and provides a novel mechanism for estrogen regulation in obesity-related, post-menopausal breast cancer. Together with our on-going studies on the role of AMP-activated protein kinase (AMPK) in the regulation of breast aromatase, this work provides another link between disregulated metabolism and breast cancer.
  • Item
    Thumbnail Image
    PIK3CA mutations are frequently observed in BRCAX but not BRCA2-associated male breast cancer
    Deb, S ; Do, H ; Byrne, D ; Jene, N ; Dobrovic, A ; Fox, SB (BMC, 2013)
    INTRODUCTION: Although a substantial proportion of male breast cancers (MBCs) are hereditary, the molecular pathways that are activated are unknown. We therefore examined the frequency and clinicopathological associations of the PIK3CA/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) pathways and their regulatory genes in familial MBC. METHODS: High resolution melting analysis and confirmatory sequencing was used to determine the presence of somatic mutations in PIK3CA (exon 9 and 20), AKT1 (exon 4), KRAS (exon 2) and BRAF (exon 15) genes in 57 familial MBCs. Further analysis of the PIK3CA/mTOR pathway was performed using immunohistochemistry for the pAKT1, pS6 and p4EBP1 biomarkers. RESULTS: PIK3CA somatic mutations were identified in 10.5% (6 of 57) of cases; there were no AKT1, KRAS or BRAF somatic mutations. PIK3CA mutations were significantly more frequent in cancers from BRCAX patients (17.2%, 5/29) than BRCA2 (0%, 0/25) carriers (P = 0.030). Two BRCAX patients had an E547K mutation which has only been reported in one female breast cancer previously. PIK3CA mutation was significantly correlated with positive pS6 (83.3% vs. 32.0%, P = 0.024) and negative p4EBP1 (100% vs. 38.0%, P = 0.006) expression, but not pAKT expression. Expression of nuclear p4EBP1 correlated with BRCA2 mutation carrier status (68.0% vs. 38.7%, P = 0.035). CONCLUSIONS: Somatic PIK3CA mutation is present in familial male breast cancer but absent in BRCA2 carriers. The presence of two of the extremely rare E547K PIK3CA mutations in our cohort may have specific relevance in MBCs. Further study of PIK3CA in MBCs, and in particular BRCAX patients, may contribute to further establishing the relevance of specific PIK3CA mutations in MBC aetiology and in the identification of particular patient groups most likely to benefit from therapeutic targeting with the novel PIK3CA inhibitors that are currently in development.
  • Item
    Thumbnail Image
    Massively-parallel sequencing assists the diagnosis and guided treatment of cancers of unknown primary
    Tothill, RW ; Li, J ; Mileshkin, L ; Doig, K ; Siganakis, T ; Cowin, P ; Fellowes, A ; Semple, T ; Fox, S ; Byron, K ; Kowalczyk, A ; Thomas, D ; Schofield, P ; Bowtell, DD (WILEY, 2013-12)
    The clinical management of patients with cancer of unknown primary (CUP) is hampered by the absence of a definitive site of origin. We explored the utility of massively-parallel (next-generation) sequencing for the diagnosis of a primary site of origin and for the identification of novel treatment options. DNA enrichment by hybridization capture of 701 genes of clinical and/or biological importance, followed by massively-parallel sequencing, was performed on 16 CUP patients who had defied attempts to identify a likely site of origin. We obtained high quality data from both fresh-frozen and formalin-fixed, paraffin-embedded samples, demonstrating accessibility to routine diagnostic material. DNA copy-number obtained by massively-parallel sequencing was comparable to that obtained using oligonucleotide microarrays or quantitatively hybridized fluorescently tagged oligonucleotides. Sequencing to an average depth of 458-fold enabled detection of somatically acquired single nucleotide mutations, insertions, deletions and copy-number changes, and measurement of allelic frequency. Common cancer-causing mutations were found in all cancers. Mutation profiling revealed therapeutic gene targets and pathways in 12/16 cases, providing novel treatment options. The presence of driver mutations that are enriched in certain known tumour types, together with mutational signatures indicative of exposure to sunlight or smoking, added to clinical, pathological, and molecular indicators of likely tissue of origin. Massively-parallel DNA sequencing can therefore provide comprehensive mutation, DNA copy-number, and mutational signature data that are of significant clinical value for a majority of CUP patients, providing both cumulative evidence for the diagnosis of primary site and options for future treatment.
  • Item
    No Preview Available
    Loss of PML cooperates with mutant p53 to drive more aggressive cancers in a gender-dependent manner
    Haupt, S ; Mitchell, C ; Corneille, V ; Shortt, J ; Fox, S ; Pandolfi, PP ; Castillo-Martin, M ; Bonal, DM ; Cordon-Cardo, C ; Lozano, G ; Haupt, Y (TAYLOR & FRANCIS INC, 2013-06-01)
    UNLABELLED: p53 mutations and downregulation of promyelocytic leukemia (PML) are common genetic alterations in human cancers. In healthy cells these two key tumor suppressors exist in a positive regulatory loop, promoting cell death and cellular senescence. However, the influence of their interplay on tumorigenesis has not been explored directly in vivo. The contribution of PML to mutant p53 driven cancer was evaluated in a mouse model harboring a p53 mutation (p53 (wild-type/R172H) ) that recapitulates a frequent p53 mutation (p53 (R175H) ) in human sporadic and Li-Fraumeni cancers. These mice with PML displayed perturbation of the hematopoietic compartment, manifested either as lymphoma or extramedullary hematopoiesis (EMH). EMH was associated with peripheral blood leucocytosis and macrocytic anemia, suggestive of myeloproliferative- myelodysplastic overlap. In contrast, a complete loss of PML from these mice resulted in a marked alteration in tumor profile. While the incidence of lymphomas was unaltered, EMH was not detected and the majority of mice succumbed to sarcomas. Further, males lacking PML exhibited a high incidence of soft tissue sarcomas and reduced survival, while females largely developed osteosarcomas, without impact on survival. Together, these findings demonstrate that PML is an important tumor suppressor dictating disease development in a pertinent mouse model of human cancer.   KEY POINTS: (1) A mutant p53 allele disrupts hematopoiesis in mice, by promoting lymphomas and myeloproliferative / myelodysplastic overlap. (2) Coincidental p53 allele mutation and PML loss shifts the tumor profile toward sarcoma formation, which is paralleled in human leiomyosarcomas (indicated by immunohistochemistry; IHC).
  • Item
    Thumbnail Image
    Frequency of Fibroblast Growth Factor Receptor 1 gene amplification in oral tongue squamous cell carcinomas and associations with clinical features and patient outcome
    YOUNG, RICHARD ; LIM, ANNETTE ; ANGEL, CHRISTOPHER ; COLLINS, MARNIE ; DEB, SIDDHARTHA ; CORRY, JUNE ; WIESENFELD, DAVID ; KLEID, STEPHEN ; SIGSTON, ELIZABETH ; SOLOMON, BENJAMIN ; RISCHIN, DANNY ; FOX, STEPHEN ; MCARTHUR, GRANT ; WRIGHT, GAVIN ; RUSSELL, PRUDENCE ; LYONS, BERNARD ( 2013)