Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 21
  • Item
    No Preview Available
    Tucatinib promotes immune activation and synergizes with programmed cell death-1 and programmed cell death-ligand 1 inhibition in HER2-positive breast cancer
    Li, R ; Sant, S ; Brown, E ; Caramia, F ; Nikolic, B ; Clarke, K ; Byrne, A ; Gonzalez, LEL ; Savas, P ; Luen, SJ ; Teo, ZL ; Virassamy, B ; Neeson, PJ ; Darcy, PK ; Loi, S (OXFORD UNIV PRESS INC, 2023-07-06)
    BACKGROUND: Programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) inhibitors have poor efficacy in patients with trastuzumab-resistant advanced HER2-positive breast cancer. Tucatinib is a potent, selective anti-HER2 tyrosine kinase inhibitor with proven clinical benefit in the advanced setting in patients with trastuzumab resistance. We investigated if tucatinib can alter the tumor microenvironment and if this could be harnessed for therapeutic efficacy. METHODS: We investigated the antitumor efficacy and contribution of the immune response of tucatinib using 2 immunocompetent, HER2-positive murine breast cancer models (trastuzumab-sensitive H2N113; trastuzumab-resistant Fo5) and the efficacy of tucatinib with trastuzumab and PD-1 or PD-L1 checkpoint inhibitors. RESULTS: In both models, tucatinib statistically significantly inhibited tumor growth and demonstrated dose-dependent efficacy. Ex vivo analysis by flow cytometry of tumor-infiltrating lymphocytes in mice treated with tucatinib showed increased frequency, higher proliferation, and enhanced effector function of CD8+ effector memory T cells. Tucatinib treatment also increased frequency of CD8+PD-1+ and CD8+TIM3+ T cells, CD49+ natural killer cells, monocytes, and major histocompatibility complex II expression on dendritic cells and macrophages and a decrease in myeloid-derived suppressor cells. Gene expression analysis revealed statistically significant enrichment in pathways associated with immune activation, type I and II interferon response, adaptive immune response, and antigen receptor signaling. In vivo, tucatinib and α-PD-L1 or α-PD-1 demonstrated statistically significantly increased efficacy and improved survival of mice compared with tucatinib alone. CONCLUSION: Tucatinib modulates the immune microenvironment favorably, and combination treatment with α-PD-L1 or α-PD-1 demonstrated increased efficacy in preclinical HER2-positive tumor models. These findings provide a rationale for investigation of tucatinib and immune checkpoint inhibition in the clinic.
  • Item
    No Preview Available
    Low-dose carboplatin modifies the tumor microenvironment to augment CAR T cell efficacy in human prostate cancer models
    Porter, LH ; Zhu, JJ ; Lister, NL ; Harrison, SG ; Keerthikumar, S ; Goode, DL ; Urban, RQ ; Byrne, DJ ; Azad, A ; Vela, I ; Hofman, MS ; Neeson, PJ ; Darcy, PK ; Trapani, JA ; Taylor, RA ; Risbridger, GP (NATURE PORTFOLIO, 2023-09-02)
    Chimeric antigen receptor (CAR) T cells have transformed the treatment landscape for hematological malignancies. However, CAR T cells are less efficient against solid tumors, largely due to poor infiltration resulting from the immunosuppressive nature of the tumor microenvironment (TME). Here, we assessed the efficacy of Lewis Y antigen (LeY)-specific CAR T cells in patient-derived xenograft (PDX) models of prostate cancer. In vitro, LeY CAR T cells directly killed organoids derived from androgen receptor (AR)-positive or AR-null PDXs. In vivo, although LeY CAR T cells alone did not reduce tumor growth, a single prior dose of carboplatin reduced tumor burden. Carboplatin had a pro-inflammatory effect on the TME that facilitated early and durable CAR T cell infiltration, including an altered cancer-associated fibroblast phenotype, enhanced extracellular matrix degradation and re-oriented M1 macrophage differentiation. In a PDX less sensitive to carboplatin, CAR T cell infiltration was dampened; however, a reduction in tumor burden was still observed with increased T cell activation. These findings indicate that carboplatin improves the efficacy of CAR T cell treatment, with the extent of the response dependent on changes induced within the TME.
  • Item
    No Preview Available
    TSTEM-like CAR-T cells exhibit improved persistence and tumor control compared with conventional CAR-T cells in preclinical models
    Meyran, D ; Zhu, JJ ; Butler, J ; Tantalo, D ; MacDonald, S ; Nguyen, TN ; Wang, M ; Thio, N ; D'Souza, C ; Qin, VM ; Slaney, C ; Harrison, A ; Sek, K ; Petrone, P ; Thia, K ; Giuffrida, L ; Scott, AM ; Terry, RL ; Tran, B ; Desai, J ; Prince, HM ; Harrison, SJ ; Beavis, PA ; Kershaw, MH ; Solomon, B ; Ekert, PG ; Trapani, JA ; Darcy, PK ; Neeson, PJ (AMER ASSOC ADVANCEMENT SCIENCE, 2023-04-05)
    Patients who receive chimeric antigen receptor (CAR)-T cells that are enriched in memory T cells exhibit better disease control as a result of increased expansion and persistence of the CAR-T cells. Human memory T cells include stem-like CD8+ memory T cell progenitors that can become either functional stem-like T (TSTEM) cells or dysfunctional T progenitor exhausted (TPEX) cells. To that end, we demonstrated that TSTEM cells were less abundant in infused CAR-T cell products in a phase 1 clinical trial testing Lewis Y-CAR-T cells (NCT03851146), and the infused CAR-T cells displayed poor persistence in patients. To address this issue, we developed a production protocol to generate TSTEM-like CAR-T cells enriched for expression of genes in cell replication pathways. Compared with conventional CAR-T cells, TSTEM-like CAR-T cells had enhanced proliferative capacity and increased cytokine secretion after CAR stimulation, including after chronic CAR stimulation in vitro. These responses were dependent on the presence of CD4+ T cells during TSTEM-like CAR-T cell production. Adoptive transfer of TSTEM-like CAR-T cells induced better control of established tumors and resistance to tumor rechallenge in preclinical models. These more favorable outcomes were associated with increased persistence of TSTEM-like CAR-T cells and an increased memory T cell pool. Last, TSTEM-like CAR-T cells and anti-programmed cell death protein 1 (PD-1) treatment eradicated established tumors, and this was associated with increased tumor-infiltrating CD8+CAR+ T cells producing interferon-γ. In conclusion, our CAR-T cell protocol generated TSTEM-like CAR-T cells with enhanced therapeutic efficacy, resulting in increased proliferative capacity and persistence in vivo.
  • Item
    No Preview Available
    Intratumoral CD8+T cells with a tissue-resident memory phenotype mediate local immunity and immune checkpoint responses in breast cancer
    Virassamy, B ; Caramia, F ; Savas, P ; Sant, S ; Wang, J ; Christo, SN ; Byrne, A ; Clarke, K ; Brown, E ; Teo, ZL ; von Scheidt, B ; Freestone, D ; Gandolfo, LC ; Weber, K ; Teply-Szymanski, J ; Li, R ; Luen, SJ ; Denkert, C ; Loibl, S ; Lucas, O ; Swanton, C ; Speed, TP ; Darcy, PK ; Neeson, PJ ; Mackay, LK ; Loi, S (CELL PRESS, 2023-03-13)
    CD8+ tumor-infiltrating lymphocytes with a tissue-resident memory T (TRM) cell phenotype are associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, the relative contribution of CD8+ TRM cells to anti-tumor immunity and immune checkpoint blockade efficacy in breast cancer remains unknown. Here, we show that intratumoral CD8+ T cells in murine mammary tumors transcriptionally resemble those from TNBC patients. Phenotypic and transcriptional studies established two intratumoral sub-populations: one more enriched in markers of terminal exhaustion (TEX-like) and the other with a bona fide resident phenotype (TRM-like). Treatment with anti-PD-1 and anti-CTLA-4 therapy resulted in expansion of these intratumoral populations, with the TRM-like subset displaying significantly enhanced cytotoxic capacity. TRM-like CD8+ T cells could also provide local immune protection against tumor rechallenge and a TRM gene signature extracted from tumor-free tissue was significantly associated with improved clinical outcomes in TNBC patients treated with checkpoint inhibitors.
  • Item
    Thumbnail Image
    IL-15 Preconditioning Augments CAR T Cell Responses to Checkpoint Blockade for Improved Treatment of Solid Tumors
    Giuffrida, L ; Sek, K ; Henderson, MA ; House, IG ; Lai, J ; Chen, AXY ; Todd, KL ; Petley, E ; Mardiana, S ; Todorovski, I ; Gruber, E ; Kelly, MJ ; Solomon, BJ ; Vervoort, SJ ; Johnstone, RW ; Parish, IA ; Neeson, PJ ; Kats, LM ; Darcy, PK ; Beavis, PA (CELL PRESS, 2020-11-04)
    Chimeric antigen receptor (CAR) T cell therapy has been highly successful in hematological malignancies leading to their US Food and Drug Administration (FDA) approval. However, the efficacy of CAR T cells in solid tumors is limited by tumor-induced immunosuppression, leading to the development of combination approaches, such as adjuvant programmed cell death 1 (PD-1) blockade. Current FDA-approved methods for generating CAR T cells utilize either anti-CD3 and interleukin (IL)-2 or anti-CD3/CD28 beads, which can generate a T cell product with an effector/exhausted phenotype. Whereas different cytokine preconditioning milieu, such as IL-7/IL-15, have been shown to promote T cell engraftment, the impact of this approach on CAR T cell responses to adjuvant immune-checkpoint blockade has not been assessed. In the current study, we reveal that the preconditioning of CAR T cells with IL-7/IL-15 increased CAR T cell responses to anti-PD-1 adjuvant therapy. This was associated with the emergence of an intratumoral CD8+CD62L+TCF7+IRF4- population that was highly responsive to anti-PD-1 therapy and mediated the vast majority of transcriptional and epigenetic changes in vivo following PD-1 blockade. Our data indicate that preservation of CAR T cells in a TCF7+ phenotype is crucial for their responsiveness to adjuvant immunotherapy approaches and should be a key consideration when designing clinical protocols.
  • Item
    Thumbnail Image
    Tumor immune microenvironment of primary prostate cancer with and without germline mutations in homologous recombination repair genes
    Trigos, AS ; Pasam, A ; Banks, P ; Wallace, R ; Guo, C ; Keam, S ; Thorne, H ; Mitchell, C ; Lade, S ; Clouston, D ; Hakansson, A ; Liu, Y ; Blyth, B ; Murphy, D ; Lawrentschuk, N ; Bolton, D ; Moon, D ; Darcy, P ; Haupt, Y ; Williams, SG ; Castro, E ; Olmos, D ; Goode, D ; Neeson, P ; Sandhu, S (BMJ PUBLISHING GROUP, 2022-06)
    BACKGROUND: Aberrations in homologous recombination repair (HRR) genes are emerging as important biomarkers for personalized treatment in prostate cancer (PCa). HRR deficiency (HRD) could affect the tumor immune microenvironment (TIME), potentially contributing to differential responses to poly ADP-ribose polymerase (PARP) inhibitors and immune checkpoint inhibitors. Spatial distribution of immune cells in a range of cancers identifies novel disease subtypes and is related to prognosis. In this study we aimed to determine the differences in the TIME of PCa with and without germline (g) HRR mutations. METHODS: We performed gene expression analysis, multiplex immunohistochemistry of T and B cells and quantitative spatial analysis of PCa samples from 36 patients with gHRD and 26 patients with sporadic PCa. Samples were archival tumor tissue from radical prostatectomies with the exception of one biopsy. Results were validated in several independent cohorts. RESULTS: Although the composition of the T cell and B cells was similar in the tumor areas of gHRD-mutated and sporadic tumors, the spatial profiles differed between these cohorts. We describe two T-cell spatial profiles across primary PCa, a clustered immune spatial (CIS) profile characterized by dense clusters of CD4+ T cells closely interacting with PD-L1+ cells, and a free immune spatial (FIS) profile of CD8+ cells in close proximity to tumor cells. gHRD tumors had a more T-cell inflamed microenvironment than sporadic tumors. The CIS profile was mainly observed in sporadic tumors, whereas a FIS profile was enriched in gHRD tumors. A FIS profile was associated with lower Gleason scores, smaller tumors and longer time to biochemical recurrence and metastasis. CONCLUSIONS: gHRD-mutated tumors have a distinct immune microenvironment compared with sporadic tumors. Spatial profiling of T-cells provides additional information beyond T-cell density and is associated with time to biochemical recurrence, time to metastasis, tumor size and Gleason scores.
  • Item
    Thumbnail Image
    Chimeric Antigen Receptor T cell Therapy and the Immunosuppressive Tumor Microenvironment in Pediatric Sarcoma
    Terry, RL ; Meyran, D ; Fleuren, EDG ; Mayoh, C ; Zhu, J ; Omer, N ; Ziegler, DS ; Haber, M ; Darcy, PK ; Trapani, JA ; Neeson, PJ ; Ekert, PG (MDPI, 2021-09)
    Sarcomas are a diverse group of bone and soft tissue tumors that account for over 10% of childhood cancers. Outcomes are particularly poor for children with refractory, relapsed, or metastatic disease. Chimeric antigen receptor T (CAR T) cells are an exciting form of adoptive cell therapy that potentially offers new hope for these children. In early trials, promising outcomes have been achieved in some pediatric patients with sarcoma. However, many children do not derive benefit despite significant expression of the targeted tumor antigen. The success of CAR T cell therapy in sarcomas and other solid tumors is limited by the immunosuppressive tumor microenvironment (TME). In this review, we provide an update of the CAR T cell therapies that are currently being tested in pediatric sarcoma clinical trials, including those targeting tumors that express HER2, NY-ESO, GD2, EGFR, GPC3, B7-H3, and MAGE-A4. We also outline promising new CAR T cells that are in pre-clinical development. Finally, we discuss strategies that are being used to overcome tumor-mediated immunosuppression in solid tumors; these strategies have the potential to improve clinical outcomes of CAR T cell therapy for children with sarcoma.
  • Item
    Thumbnail Image
    CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity
    Burr, ML ; Sparbier, CE ; Chan, Y-C ; Williamson, JC ; Woods, K ; Beavis, PA ; Lam, EYN ; Henderson, MA ; Bell, CC ; Stolzenburg, S ; Gilan, O ; Bloor, S ; Noori, T ; Morgens, DW ; Bassik, MC ; Neeson, PJ ; Behren, A ; Darcy, PK ; Dawson, S-J ; Voskoboinik, I ; Trapani, JA ; Cebon, J ; Lehner, PJ ; Dawson, MA (NATURE RESEARCH, 2017-09-07)
    Cancer cells exploit the expression of the programmed death-1 (PD-1) ligand 1 (PD-L1) to subvert T-cell-mediated immunosurveillance. The success of therapies that disrupt PD-L1-mediated tumour tolerance has highlighted the need to understand the molecular regulation of PD-L1 expression. Here we identify the uncharacterized protein CMTM6 as a critical regulator of PD-L1 in a broad range of cancer cells, by using a genome-wide CRISPR-Cas9 screen. CMTM6 is a ubiquitously expressed protein that binds PD-L1 and maintains its cell surface expression. CMTM6 is not required for PD-L1 maturation but co-localizes with PD-L1 at the plasma membrane and in recycling endosomes, where it prevents PD-L1 from being targeted for lysosome-mediated degradation. Using a quantitative approach to profile the entire plasma membrane proteome, we find that CMTM6 displays specificity for PD-L1. Notably, CMTM6 depletion decreases PD-L1 without compromising cell surface expression of MHC class I. CMTM6 depletion, via the reduction of PD-L1, significantly alleviates the suppression of tumour-specific T cell activity in vitro and in vivo. These findings provide insights into the biology of PD-L1 regulation, identify a previously unrecognized master regulator of this critical immune checkpoint and highlight a potential therapeutic target to overcome immune evasion by tumour cells.
  • Item
    Thumbnail Image
    MAIT cells regulate NK cell-mediated tumor immunity
    Petley, E ; Koay, H-F ; Henderson, MA ; Sek, K ; Todd, KL ; Keam, SP ; Lai, J ; House, IG ; Li, J ; Zethoven, M ; Chen, AXY ; Oliver, AJ ; Michie, J ; Freeman, AJ ; Giuffrida, L ; Chan, JD ; Pizzolla, A ; Mak, JYW ; McCulloch, TR ; Souza-Fonseca-Guimaraes, F ; Kearney, CJ ; Millen, R ; Ramsay, RG ; Huntington, ND ; McCluskey, J ; Oliaro, J ; Fairlie, DP ; Neeson, PJ ; Godfrey, D ; Beavis, PA ; Darcy, PK (NATURE PORTFOLIO, 2021-08-06)
    The function of MR1-restricted mucosal-associated invariant T (MAIT) cells in tumor immunity is unclear. Here we show that MAIT cell-deficient mice have enhanced NK cell-dependent control of metastatic B16F10 tumor growth relative to control mice. Analyses of this interplay in human tumor samples reveal that high expression of a MAIT cell gene signature negatively impacts the prognostic significance of NK cells. Paradoxically, pre-pulsing tumors with MAIT cell antigens, or activating MAIT cells in vivo, enhances anti-tumor immunity in B16F10 and E0771 mouse tumor models, including in the context of established metastasis. These effects are associated with enhanced NK cell responses and increased expression of both IFN-γ-dependent and inflammatory genes in NK cells. Importantly, activated human MAIT cells also promote the function of NK cells isolated from patient tumor samples. Our results thus describe an activation-dependent, MAIT cell-mediated regulation of NK cells, and suggest a potential therapeutic avenue for cancer treatment.
  • Item
    No Preview Available
    Preclinical Evidence of the Efficacy of Lewis Y Car T Cells in Patient-Derived Models of Prostate Cancer
    Risbridger, GP ; Porter, LH ; Zhu, J ; Byrne, D ; Lister, N ; Azad, A ; Hofman, M ; Vela, I ; Taylor, RA ; Neeson, P ; Darcy, P ; Trapani, J (The Endocrine Society, 2021-05-03)
    Abstract Chimeric antigen receptor T (CAR T) cell therapy is an adoptive immunotherapy that has led to new treatments for lymphoma, leukemia, and other blood cancers; however, its efficacy for prostate cancer remains unproven. Here we report pre-clinical evidence of the efficacy of CAR T cell therapy against the Lewis Y antigen (LeY) using patient-derived models of prostate cancer. To assess the expression of LeY on prostate tumours, we performed immunohistochemistry on a cohort of 41 patient-derived xenografts (PDXs). Cytoplasmic and membrane expression were separately assessed and quantified, for each patient. Overall, 61% (25/41) of PDXs were positive for membrane LeY expression, of which 18 PDXs had greater than 50% membrane-positive cells, and considered most suitable to detection and stable binding by anti-LeY CAR T’s. To determine the in vitro sensitivity to CAR T cytotoxicity, we selected 4 PDXs with high and 2 PDXs with low LeY expression using 3 androgen receptor (AR)-positive adenocarcinomas and 3 AR-negative tumors expressing neuroendocrine markers. Next we established organoids for in vitro co-culture assays where organoids were co-incubated with an equal number of anti-LeY+ CAR T cells or Empty vector control CAR T cells (Ev CAR T). Using time-lapse microscopy we reported destruction of organoids by LeY+ CAR T cells as indicated by their morphological collapse and uptake of propidium iodide from the culture medium; control Ev CAR T cells produced no cytotoxicity. Over the 48h assay, the level of target cell death of the LeY+ organoids was correlated to the intensity LeY surface expression. Target cell death mediated by the CAR T cells required perforin and granzyme B, as potent and highly specific small molecule inhibitors of perforin (SN34960) and granzyme B (C20) applied alone or in combination greatly decreased PI uptake, indicating organoid survival. Neither inhibitor adversely affected CAR T cell viability as measured by PI and Annexin V staining. This demonstrated canonical activation of granule exocytosis pathway by the CAR T cells, leading to organoid cell death. To assess CAR T cell efficacy in vivo, we selected one PDX with high LeY expression. Monotherapy with CAR T cells failed to decrease tumour volume compared to vehicle control. However, CAR T cells given after a single dose of the chemotherapeutic agent carboplatin greatly and durably reduced tumour burden, with residual tumour mass being less than 1% of their original size (0.56 ± 0.23% of tumour volume at the start of treatment). Overall, these data provide preclinical evidence that: i) high membrane expression of LeY correlates with in vitro and in vivo CAR T cell-induced tumour cell death via the canonical perforin/granzyme B mechanism; and, ii) membrane LeY can be used as a biomarker for patient selection.