Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    Gene-Expression Profiling of Mucinous Ovarian Tumors and Comparison with Upper and Lower Gastrointestinal Tumors Identifies Markers Associated with Adverse Outcomes
    Meagher, NS ; Gorringe, KL ; Wakefield, M ; Bolithon, A ; Pang, CNI ; Chiu, DS ; Anglesio, MS ; Mallitt, K-A ; Doherty, JA ; Harris, HR ; Schildkraut, JM ; Berchuck, A ; Cushing-Haugen, KL ; Chezar, K ; Chou, A ; Tan, A ; Alsop, J ; Barlow, E ; Beckmann, MW ; Boros, J ; Bowtell, DDL ; Brand, AH ; Brenton, JD ; Campbell, I ; Cheasley, D ; Cohen, J ; Cybulski, C ; Elishaev, E ; Erber, R ; Farrell, R ; Fischer, A ; Fu, Z ; Gilks, B ; Gill, AJ ; Gourley, C ; Grube, M ; Harnett, PR ; Hartmann, A ; Hettiaratchi, A ; Hogdall, CK ; Huzarski, T ; Jakubowska, A ; Jimenez-Linan, M ; Kennedy, CJ ; Kim, B-G ; Kim, J-W ; Kim, J-H ; Klett, K ; Koziak, JM ; Lai, T ; Laslavic, A ; Lester, J ; Leung, Y ; Li, N ; Liauw, W ; Lim, BWX ; Linder, A ; Lubinski, J ; Mahale, S ; Mateoiu, C ; McInerny, S ; Menkiszak, J ; Minoo, P ; Mittelstadt, S ; Morris, D ; Orsulic, S ; Park, S-Y ; Pearce, CL ; Pearson, J ; Pike, MC ; Quinn, CM ; Mohan, GR ; Rao, J ; Riggan, MJ ; Ruebner, M ; Salfinger, S ; Scott, CL ; Shah, M ; Steed, H ; Stewart, CJR ; Subramanian, D ; Sung, S ; Tang, K ; Timpson, P ; Ward, RL ; Wiedenhoefer, R ; Thorne, H ; Cohen, PA ; Crowe, P ; Fasching, PA ; Gronwald, J ; Hawkins, NJ ; Hogdall, E ; Huntsman, DG ; James, PA ; Karlan, BY ; Kelemen, LE ; Kommoss, S ; Konecny, GE ; Modugno, F ; Park, SK ; Staebler, A ; Sundfeldt, K ; Wu, AH ; Talhouk, A ; Pharoah, PDP ; Anderson, L ; DeFazio, A ; Kobel, M ; Friedlander, ML ; Ramus, SJ (AMER ASSOC CANCER RESEARCH, 2022-12-15)
    PURPOSE: Advanced-stage mucinous ovarian carcinoma (MOC) has poor chemotherapy response and prognosis and lacks biomarkers to aid stage I adjuvant treatment. Differentiating primary MOC from gastrointestinal (GI) metastases to the ovary is also challenging due to phenotypic similarities. Clinicopathologic and gene-expression data were analyzed to identify prognostic and diagnostic features. EXPERIMENTAL DESIGN: Discovery analyses selected 19 genes with prognostic/diagnostic potential. Validation was performed through the Ovarian Tumor Tissue Analysis consortium and GI cancer biobanks comprising 604 patients with MOC (n = 333), mucinous borderline ovarian tumors (MBOT, n = 151), and upper GI (n = 65) and lower GI tumors (n = 55). RESULTS: Infiltrative pattern of invasion was associated with decreased overall survival (OS) within 2 years from diagnosis, compared with expansile pattern in stage I MOC [hazard ratio (HR), 2.77; 95% confidence interval (CI), 1.04-7.41, P = 0.042]. Increased expression of THBS2 and TAGLN was associated with shorter OS in MOC patients (HR, 1.25; 95% CI, 1.04-1.51, P = 0.016) and (HR, 1.21; 95% CI, 1.01-1.45, P = 0.043), respectively. ERBB2 (HER2) amplification or high mRNA expression was evident in 64 of 243 (26%) of MOCs, but only 8 of 243 (3%) were also infiltrative (4/39, 10%) or stage III/IV (4/31, 13%). CONCLUSIONS: An infiltrative growth pattern infers poor prognosis within 2 years from diagnosis and may help select stage I patients for adjuvant therapy. High expression of THBS2 and TAGLN in MOC confers an adverse prognosis and is upregulated in the infiltrative subtype, which warrants further investigation. Anti-HER2 therapy should be investigated in a subset of patients. MOC samples clustered with upper GI, yet markers to differentiate these entities remain elusive, suggesting similar underlying biology and shared treatment strategies.
  • Item
    Thumbnail Image
    Investigation of monogenic causes of familial breast cancer: data from the BEACCON case-control study
    Li, N ; Lim, BWX ; Thompson, ER ; McInerny, S ; Zethoven, M ; Cheasley, D ; Rowley, SM ; Wong-Brown, MW ; Devereux, L ; Gorringe, KL ; Sloan, EK ; Trainer, A ; Scott, RJ ; James, PA ; Campbell, IG (NATURE RESEARCH, 2021-06-11)
    Breast cancer (BC) has a significant heritable component but the genetic contribution remains unresolved in the majority of high-risk BC families. This study aims to investigate the monogenic causes underlying the familial aggregation of BC beyond BRCA1 and BRCA2, including the identification of new predisposing genes. A total of 11,511 non-BRCA familial BC cases and population-matched cancer-free female controls in the BEACCON study were investigated in two sequencing phases: 1303 candidate genes in up to 3892 cases and controls, followed by validation of 145 shortlisted genes in an additional 7619 subjects. The coding regions and exon-intron boundaries of all candidate genes and 14 previously proposed BC genes were sequenced using custom designed sequencing panels. Pedigree and pathology data were analysed to identify genotype-specific associations. The contribution of ATM, PALB2 and CHEK2 to BC predisposition was confirmed, but not RAD50 and NBN. An overall excess of loss-of-function (LoF) (OR 1.27, p = 9.05 × 10-9) and missense (OR 1.27, p = 3.96 × 10-73) variants was observed in the cases for the 145 candidate genes. Leading candidates harbored LoF variants with observed ORs of 2-4 and individually accounted for no more than 0.79% of the cases. New genes proposed by this study include NTHL1, WRN, PARP2, CTH and CDK9. The new candidate BC predisposition genes identified in BEACCON indicate that much of the remaining genetic causes of high-risk BC families are due to genes in which pathogenic variants are both very rare and convey only low to moderate risk.
  • Item
    Thumbnail Image
    Molecular comparison of interval and screen-detected breast cancers
    Cheasley, D ; Li, N ; Rowley, SM ; Elder, K ; Mann, GB ; Loi, S ; Savas, P ; Goode, DL ; Kader, T ; Zethoven, M ; Semple, T ; Fox, SB ; Pang, J-M ; Byrne, D ; Devereux, L ; Nickson, C ; Procopio, P ; Lee, G ; Hughes, S ; Saunders, H ; Fujihara, KM ; Kuykhoven, K ; Connaughton, J ; James, PA ; Gorringe, KL ; Campbell, IG (WILEY, 2019-06)
  • Item
    Thumbnail Image
    Molecular analysis of PALB2-associated breast cancers
    Lee, JEA ; Li, N ; Rowley, SM ; Cheasley, D ; Zethoven, M ; McInerny, S ; Gorringe, KL ; James, PA ; Campbell, IG (WILEY, 2018-05)
  • Item
    Thumbnail Image
    Evaluation of the association of heterozygous germline variants in NTHL1 with breast cancer predisposition: an international multi-center study of 47,180 subjects
    Li, N ; Zethoven, M ; McInerny, S ; Devereux, L ; Huang, Y-K ; Thio, N ; Cheasley, D ; Gutierrez-Enriquez, S ; Moles-Fernandez, A ; Diez, O ; Nguyen-Dumont, T ; Southey, MC ; Hopper, JL ; Simard, J ; Dumont, M ; Soucy, P ; Meindl, A ; Schmutzler, R ; Schmidt, MK ; Adank, MA ; Andrulis, IL ; Hahnen, E ; Engel, C ; Lesueur, F ; Girard, E ; Neuhausen, SL ; Ziv, E ; Allen, J ; Easton, DF ; Scott, RJ ; Gorringe, KL ; James, PA ; Campbell, IG (NATURE RESEARCH, 2021-05-12)
    Bi-allelic loss-of-function (LoF) variants in the base excision repair (BER) gene NTHL1 cause a high-risk hereditary multi-tumor syndrome that includes breast cancer, but the contribution of heterozygous variants to hereditary breast cancer is unknown. An analysis of 4985 women with breast cancer, enriched for familial features, and 4786 cancer-free women revealed significant enrichment for NTHL1 LoF variants. Immunohistochemistry confirmed reduced NTHL1 expression in tumors from heterozygous carriers but the NTHL1 bi-allelic loss characteristic mutational signature (SBS 30) was not present. The analysis was extended to 27,421 breast cancer cases and 19,759 controls from 10 international studies revealing 138 cases and 93 controls with a heterozygous LoF variant (OR 1.06, 95% CI: 0.82-1.39) and 316 cases and 179 controls with a missense variant (OR 1.31, 95% CI: 1.09-1.57). Missense variants selected for deleterious features by a number of in silico bioinformatic prediction tools or located within the endonuclease III functional domain showed a stronger association with breast cancer. Somatic sequencing of breast cancers from carriers indicated that the risk associated with NTHL1 appears to operate through haploinsufficiency, consistent with other described low-penetrance breast cancer genes. Data from this very large international multicenter study suggests that heterozygous pathogenic germline coding variants in NTHL1 may be associated with low- to moderate- increased risk of breast cancer.
  • Item
    Thumbnail Image
    Prevalence of PALB2 mutations in Australian familial breast cancer cases and controls
    Thompson, ER ; Gorringe, KL ; Rowley, SM ; Wong-Brown, MW ; McInerny, S ; Li, N ; Trainer, AH ; Devereux, L ; Doyle, MA ; Li, J ; Lupat, R ; Delatycki, MB ; Mitchell, G ; James, PA ; Scott, RJ ; Campbell, IG (BMC, 2015-08-19)
    INTRODUCTION: PALB2 is emerging as a high-penetrance breast cancer predisposition gene in the order of BRCA1 and BRCA2. However, large studies that have evaluated the full gene rather than just the most common variants in both cases and controls are required before all truncating variants can be included in familial breast cancer variant testing. METHODS: In this study we analyse almost 2000 breast cancer cases sourced from individuals referred to familial cancer clinics, thus representing typical cases presenting in clinical practice. These cases were compared to a similar number of population-based cancer-free controls. RESULTS: We identified a significant excess of truncating variants in cases (1.3 %) versus controls (0.2 %), including six novel variants (p = 0.0001; odds ratio (OR) 6.58, 95 % confidence interval (CI) 2.3-18.9). Three of the four control individuals carrying truncating variants had at least one relative with breast cancer. There was no excess of missense variants in cases overall, but the common c.1676A > G variant (rs152451) was significantly enriched in cases and may represent a low-penetrance polymorphism (p = 0.002; OR 1.24 (95 % CI 1.09-1.47). CONCLUSIONS: Our findings support truncating variants in PALB2 as high-penetrance breast cancer susceptibility alleles, and suggest that a common missense variant may also lead to a low level of increased breast cancer risk.
  • Item
    Thumbnail Image
    Reevaluation of the BRCA2 truncating allele c.9976A > T (p.Lys3326Ter) in a familial breast cancer context
    Thompson, ER ; Gorringe, KL ; Rowley, SM ; Li, N ; McInerny, S ; Wong-Brown, MW ; Devereux, L ; Li, J ; Trainer, AH ; Mitchell, G ; Scott, RJ ; James, PA ; Campbell, IG (NATURE PORTFOLIO, 2015-10-12)
    The breast cancer predisposition gene, BRCA2, has a large number of genetic variants of unknown effect. The variant rs11571833, an A > T transversion in the final exon of the gene that leads to the creation of a stop codon 93 amino acids early (K3326*), is reported as a neutral polymorphism but there is some evidence to suggest an association with an increased risk of breast cancer. We assessed whether this variant was enriched in a cohort of breast cancer cases ascertained through familial cancer clinics compared to population-based non-cancer controls using a targeted sequencing approach. We identified the variant in 66/2634 (2.5%) cases and 33/1996 (1.65%) controls, indicating an enrichment in the breast cancer cases (p = 0.047, OR 1.53, 95% CI 1.00-2.34). This data is consistent with recent iCOGs data suggesting that this variant is not neutral with respect to breast cancer risk. rs11571833 may need to be included in SNP panels for evaluating breast cancer risk.
  • Item
    Thumbnail Image
    Exome sequencing of familial high-grade serous ovarian carcinoma reveals heterogeneity for rare candidate susceptibility genes
    Subramanian, DN ; Zethoven, M ; McInerny, S ; Morgan, JA ; Rowley, SM ; Lee, JEA ; Li, N ; Gorringe, KL ; James, PA ; Campbell, IG (NATURE PORTFOLIO, 2020-04-02)
    High-grade serous ovarian carcinoma (HGSOC) has a significant hereditary component, approximately half of which cannot be explained by known genes. To discover genes, we analyse germline exome sequencing data from 516 BRCA1/2-negative women with HGSOC, focusing on genes enriched with rare, protein-coding loss-of-function (LoF) variants. Overall, there is a significant enrichment of rare protein-coding LoF variants in the cases (p < 0.0001, chi-squared test). Only thirty-four (6.6%) have a pathogenic variant in a known or proposed predisposition gene. Few genes have LoF mutations in more than four individuals and the majority are detected in one individual only. Forty-three highly-ranked genes are identified with three or more LoF variants that are enriched by three-fold or more compared to GnomAD. These genes represent diverse functional pathways with relatively few involved in DNA repair, suggesting that much of the remaining heritability is explained by previously under-explored genes and pathways.
  • Item
    Thumbnail Image
    The TP53 mutation rate differs in breast cancers that arise in women with high or low mammographic density
    Cheasley, D ; Devereux, L ; Hughes, S ; Nickson, C ; Procopio, P ; Lee, G ; Li, N ; Pridmore, V ; Elder, K ; Mann, GB ; Kader, T ; Rowley, SM ; Fox, SB ; Byrne, D ; Saunders, H ; Fujihara, KM ; Lim, B ; Gorringe, KL ; Campbell, IG (NATURE RESEARCH, 2020-08-07)
    Mammographic density (MD) influences breast cancer risk, but how this is mediated is unknown. Molecular differences between breast cancers arising in the context of the lowest and highest quintiles of mammographic density may identify the mechanism through which MD drives breast cancer development. Women diagnosed with invasive or in situ breast cancer where MD measurement was also available (n = 842) were identified from the Lifepool cohort of >54,000 women participating in population-based mammographic screening. This group included 142 carcinomas in the lowest quintile of MD and 119 carcinomas in the highest quintile. Clinico-pathological and family history information were recorded. Tumor DNA was collected where available (n = 56) and sequenced for breast cancer predisposition and driver gene mutations, including copy number alterations. Compared to carcinomas from low-MD breasts, those from high-MD breasts were significantly associated with a younger age at diagnosis and features associated with poor prognosis. Low- and high-MD carcinomas matched for grade, histological subtype, and hormone receptor status were compared for somatic genetic features. Low-MD carcinomas had a significantly increased frequency of TP53 mutations, higher homologous recombination deficiency, higher fraction of the genome altered, and more copy number gains on chromosome 1q and losses on 17p. While high-MD carcinomas showed enrichment of tumor-infiltrating lymphocytes in the stroma. The data demonstrate that when tumors were matched for confounding clinico-pathological features, a proportion in the lowest quintile of MD appear biologically distinct, reflective of microenvironment differences between the lowest and highest quintiles of MD.
  • Item
    Thumbnail Image
    Evaluating the breast cancer predisposition role of rare variants in genes associated with low-penetrance breast cancer risk SNPs
    Li, N ; Rowley, SM ; Thompson, ER ; McInerny, S ; Devereux, L ; Amarasinghe, KC ; Zethoven, M ; Lupat, R ; Goode, D ; Li, J ; Trainer, AH ; Gorringe, KL ; James, PA ; Campbell, IG (BIOMED CENTRAL LTD, 2018-01-09)
    BACKGROUND: Genome-wide association studies (GWASs) have identified numerous single-nucleotide polymorphisms (SNPs) associated with small increases in breast cancer risk. Studies to date suggest that some SNPs alter the expression of the associated genes, which potentially mediates risk modification. On this basis, we hypothesised that some of these genes may be enriched for rare coding variants associated with a higher breast cancer risk. METHODS: The coding regions and exon-intron boundaries of 56 genes that have either been proposed by GWASs to be the regulatory targets of the SNPs and/or located < 500 kb from the risk SNPs were sequenced in index cases from 1043 familial breast cancer families that previously had negative test results for BRCA1 and BRCA2 mutations and 944 population-matched cancer-free control participants from an Australian population. Rare (minor allele frequency ≤ 0.001 in the Exome Aggregation Consortium and Exome Variant Server databases) loss-of-function (LoF) and missense variants were studied. RESULTS: LoF variants were rare in both the cases and control participants across all the candidate genes, with only 38 different LoF variants observed in a total of 39 carriers. For the majority of genes (n = 36), no LoF variants were detected in either the case or control cohorts. No individual gene showed a significant excess of LoF or missense variants in the cases compared with control participants. Among all candidate genes as a group, the total number of carriers with LoF variants was higher in the cases than in the control participants (26 cases and 13 control participants), as was the total number of carriers with missense variants (406 versus 353), but neither reached statistical significance (p = 0.077 and p = 0.512, respectively). The genes contributing most of the excess of LoF variants in the cases included TET2, NRIP1, RAD51B and SNX32 (12 cases versus 2 control participants), whereas ZNF283 and CASP8 contributed largely to the excess of missense variants (25 cases versus 8 control participants). CONCLUSIONS: Our data suggest that rare LoF and missense variants in genes associated with low-penetrance breast cancer risk SNPs may contribute some additional risk, but as a group these genes are unlikely to be major contributors to breast cancer heritability.