Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Mutational profiling of familial male breast cancers reveals similarities with luminal A female breast cancer with rare TP53 mutations
    Deb, S ; Wong, SQ ; Li, J ; Do, H ; Weiss, J ; Byrne, D ; Chakrabarti, A ; Bosma, T ; Fellowes, A ; Dobrovic, A ; Fox, SB (NATURE PUBLISHING GROUP, 2014-12-09)
    BACKGROUND: Male breast cancer (MBC) is still poorly understood with a large proportion arising in families with a history of breast cancer. Genomic studies have focused on germline determinants of MBC risk, with minimal knowledge of somatic changes in these cancers. METHODS: Using a TruSeq amplicon cancer panel, this study evaluated 48 familial MBCs (3 BRCA1 germline mutant, 17 BRCA2 germline mutant and 28 BRCAX) for hotspot somatic mutations and copy number changes in 48 common cancer genes. RESULTS: Twelve missense mutations included nine PIK3CA mutations (seven in BRCAX patients), two TP53 mutations (both in BRCA2 patients) and one PTEN mutation. Common gains were seen in GNAS (34.1%) and losses were seen in GNAQ (36.4%), ABL1 (47.7%) and ATM (34.1%). Gains of HRAS (37.5% vs 3%, P=0.006), STK11 (25.0% vs 0%, P=0.01) and SMARCB1 (18.8% vs 0%, P=0.04) and the loss of RB1 (43.8% vs 13%, P=0.03) were specific to BRCA2 tumours. CONCLUSIONS: This study is the first to perform high-throughput somatic sequencing on familial MBCs. Overall, PIK3CA mutations are most commonly seen, with fewer TP53 and PTEN mutations, similar to the profile seen in luminal A female breast cancers. Differences in mutation profiles and patterns of gene gains/losses are seen between BRCA2 (associated with TP53/PTEN mutations, loss of RB1 and gain of HRAS, STK11 and SMARCB1) and BRCAX (associated with PIK3CA mutations) tumours, suggesting that BRCA2 and BRCAX MBCs may be distinct and arise from different tumour pathways. This has implications on potential therapies, depending on the BRCA status of MBC patients.
  • Item
    Thumbnail Image
    COX-2 expression is predictive for early relapse and aromatase inhibitor resistance in patients with ductal carcinoma in situ of the breast, and is a target for treatment
    Generali, D ; Buffa, FM ; Deb, S ; Cummings, M ; Reid, LE ; Taylor, M ; Andreis, D ; Allevi, G ; Ferrero, G ; Byrne, D ; Martinotti, M ; Bottini, A ; Harris, AL ; Lakhani, SR ; Fox, SB (NATURE PUBLISHING GROUP, 2014-07-08)
    BACKGROUND: Stratification of patients for treatment of ductal carcinoma in situ (DCIS) is suboptimal, with high systemic overtreatment rates. METHODS: A training set of 95 tumours from women with pure DCIS were immunostained for proteins involved in cell survival, hypoxia, growth factor and hormone signalling. A generalised linear regression with regularisation and variable selection was applied to a multiple covariate Cox survival analysis with recurrence-free survival 10-fold cross-validation and leave-one-out iterative approach were used to build and test the model that was validated using an independent cohort of 58 patients with pure DCIS. The clinical role of a COX-2-targeting agent was then tested in a proof-of-concept neoadjuvant randomised trial in ER-positive DCIS treated with exemestane 25 mg day(-1)± celecoxib 800 mg day(-1). RESULTS: The COX-2 expression was an independent prognostic factor for early relapse in the training (HR 37.47 (95% CI: 5.56-252.74) P=0.0001) and independent validation cohort (HR 3.9 (95% CI: 1.8-8.3) P=0.002). There was no significant interaction with other clinicopathological variables. A statistically significant reduction of Ki-67 expression after treatment with exemestane ± celecoxib was observed (P<0.02) with greater reduction in the combination arm (P<0.004). Concomitant reduction in COX-2 expression was statistically significant in the exemestane and celecoxib arm (P<0.03) only. CONCLUSIONS: In patients with DCIS, COX-2 may predict recurrence, aiding clinical decision making. A combination of an aromatase inhibitor and celecoxib has significant biological effect and may be integrated into treatment of COX2-positive DCIS at high risk of recurrence.
  • Item
    Thumbnail Image
    Methylation profiling of ductal carcinoma in situ and its relationship to histopathological features
    Pang, J-MB ; Deb, S ; Takano, EA ; Byrne, DJ ; Jene, N ; Boulghourjian, A ; Holliday, A ; Millar, E ; Lee, CS ; O'Toole, SA ; Dobrovic, A ; Fox, SB (BMC, 2014)
    INTRODUCTION: DNA methylation is a well-studied biomarker in invasive breast cancer, but its role in ductal carcinoma in situ (DCIS) is less well characterized. The aims of this study are to assess the methylation profile in DCIS for a panel of well-characterized genes that are frequently methylated in breast cancer, to investigate the relationship of methylation with pathological features, and to perform a proof-of-principle study to evaluate the practicality of methylation as a biomarker in diagnostic DCIS material. METHODS: Promoter CpG island methylation for a panel of 11 breast cancer-related genes was performed by methylation-sensitive high resolution melting (MS-HRM). Formalin-fixed, paraffin-embedded (FFPE) biopsies from 72 samples of pure DCIS (DCIS occurring in the absence of synchronous invasive carcinoma), 10 samples of mixed DCIS (DCIS adjacent to invasive carcinoma), and 18 samples of normal breast epithelium adjacent to a DCIS lesion were micro-dissected prior to DNA extraction. RESULTS: Methylation was seen for all the tested genes except BRCA1. RASSF1A was the most frequently methylated gene (90% of DCIS samples) and its methylation was associated with comedo necrosis (p = 0.018). Cluster analysis based on the methylation profile revealed four groups, the highly methylated cluster being significantly associated with high nuclear grade, HER2 amplification, negative estrogen receptor (ER) α status, and negative progesterone receptor (PgR) status, (p = 0.038, p = 0.018, p <0.001, p = 0.001, respectively). Methylation of APC (p = 0.017), CDH13 (p = 0.017), and RARβ (p <0.001) was associated with negative ERα status. Methylation of CDH13 (p <0.001), and RARβ (p = 0.001) was associated with negative PgR status. Methylation of APC (p = 0.013) and CDH13 (p = 0.026) was associated with high nuclear grade. Methylation of CDH13 (p = 0.009), and RARβ (p = 0.042) was associated with HER2-amplification. CONCLUSIONS: DNA methylation can be assessed in FFPE-derived samples using suitable methodologies. Methylation of a panel of genes that are known to be methylated in invasive breast cancer was able to classify DCIS into distinct groups and was differentially associated with phenotypic features in DCIS.
  • Item
    Thumbnail Image
    PIK3CA mutations are frequently observed in BRCAX but not BRCA2-associated male breast cancer
    Deb, S ; Do, H ; Byrne, D ; Jene, N ; Dobrovic, A ; Fox, SB (BMC, 2013)
    INTRODUCTION: Although a substantial proportion of male breast cancers (MBCs) are hereditary, the molecular pathways that are activated are unknown. We therefore examined the frequency and clinicopathological associations of the PIK3CA/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) pathways and their regulatory genes in familial MBC. METHODS: High resolution melting analysis and confirmatory sequencing was used to determine the presence of somatic mutations in PIK3CA (exon 9 and 20), AKT1 (exon 4), KRAS (exon 2) and BRAF (exon 15) genes in 57 familial MBCs. Further analysis of the PIK3CA/mTOR pathway was performed using immunohistochemistry for the pAKT1, pS6 and p4EBP1 biomarkers. RESULTS: PIK3CA somatic mutations were identified in 10.5% (6 of 57) of cases; there were no AKT1, KRAS or BRAF somatic mutations. PIK3CA mutations were significantly more frequent in cancers from BRCAX patients (17.2%, 5/29) than BRCA2 (0%, 0/25) carriers (P = 0.030). Two BRCAX patients had an E547K mutation which has only been reported in one female breast cancer previously. PIK3CA mutation was significantly correlated with positive pS6 (83.3% vs. 32.0%, P = 0.024) and negative p4EBP1 (100% vs. 38.0%, P = 0.006) expression, but not pAKT expression. Expression of nuclear p4EBP1 correlated with BRCA2 mutation carrier status (68.0% vs. 38.7%, P = 0.035). CONCLUSIONS: Somatic PIK3CA mutation is present in familial male breast cancer but absent in BRCA2 carriers. The presence of two of the extremely rare E547K PIK3CA mutations in our cohort may have specific relevance in MBCs. Further study of PIK3CA in MBCs, and in particular BRCAX patients, may contribute to further establishing the relevance of specific PIK3CA mutations in MBC aetiology and in the identification of particular patient groups most likely to benefit from therapeutic targeting with the novel PIK3CA inhibitors that are currently in development.
  • Item
    Thumbnail Image
    BRCA2 carriers with male breast cancer show elevated tumour methylation
    Deb, S ; Gorringe, KL ; Pang, J-MB ; Byrne, DJ ; Takano, EA ; Dobrovic, A ; Fox, SB (BIOMED CENTRAL LTD, 2017-09-11)
    BACKGROUND: Male breast cancer (MBC) represents a poorly characterised group of tumours, the management of which is largely based on practices established for female breast cancer. However, recent studies demonstrate biological and molecular differences likely to impact on tumour behaviour and therefore patient outcome. The aim of this study was to investigate methylation of a panel of commonly methylated breast cancer genes in familial MBCs. METHODS: 60 tumours from 3 BRCA1 and 25 BRCA2 male mutation carriers and 32 males from BRCAX families were assessed for promoter methylation by methylation-sensitive high resolution melting in a panel of 10 genes (RASSF1A, TWIST1, APC, WIF1, MAL, RARβ, CDH1, RUNX3, FOXC1 and GSTP1). An average methylation index (AMI) was calculated for each case comprising the average of the methylation of the 10 genes tested as an indicator of overall tumour promoter region methylation. Promoter hypermethylation and AMI were correlated with BRCA carrier mutation status and clinicopathological parameters including tumour stage, grade, histological subtype and disease specific survival. RESULTS: Tumours arising in BRCA2 mutation carriers showed significantly higher methylation of candidate genes, than those arising in non-BRCA2 familial MBCs (average AMI 23.6 vs 16.6, p = 0.01, 45% of genes hypermethylated vs 34%, p < 0.01). RARβ methylation and AMI-high status were significantly associated with tumour size (p = 0.01 and p = 0.02 respectively), RUNX3 methylation with invasive carcinoma of no special type (94% vs 69%, p = 0.046) and RASSF1A methylation with coexistence of high grade ductal carcinoma in situ (33% vs 6%, p = 0.02). Cluster analysis showed MBCs arising in BRCA2 mutation carriers were characterised by RASSF1A, WIF1, RARβ and GTSP1 methylation (p = 0.02) whereas methylation in BRCAX tumours showed no clear clustering to particular genes. TWIST1 methylation (p = 0.001) and AMI (p = 0.01) were prognostic for disease specific survival. CONCLUSIONS: Increased methylation defines a subset of familial MBC and with AMI may be a useful prognostic marker. Methylation might be predictive of response to novel therapeutics that are currently under investigation in other cancer types.
  • Item
    Thumbnail Image
    RAD21 cohesin overexpression is a prognostic and predictive marker exacerbating poor prognosis in KRAS mutant colorectal carcinomas
    Deb, S ; Xu, H ; Tuynman, J ; George, J ; Yan, Y ; Li, J ; Ward, RL ; Mortensen, N ; Hawkins, NJ ; McKay, MJ ; Ramsay, RG ; Fox, SB (NATURE PUBLISHING GROUP, 2014-03-18)
    BACKGROUND: RAD21 is a component of the cohesion complex and is integral to chromosome segregation and error-free DNA repair. RAD21 is functionally important in tumour progression but its role in colorectal carcinoma (CRC) is unclear. We therefore assessed its clinicopathological and prognostic significance in CRC, as well as its effect on chemosensitivity. METHODS: A retrospective observation study examined RAD21 expression in 652 CRCs using a tissue microarray approach. Correlation with clinicopathological factors including gender, tumour grade, mucinous subtype, TNM stage, disease-specific survival (DSS), BRAF and KRAS mutation status, tumour p53 immunostaining, tumour microsatellite instability and tumour CpG island methylator phenotype was performed. Colorectal cancer cell clones with stable RAD21 knockdown were generated and tested for cellular sensitivity to conventional chemotherapeutic drugs. RESULTS: RAD21 expression was significantly correlated with male gender (56.7% vs 43.3%, P=0.02), well-differentiated histology (14.4% vs 4.0%, P=0.0001), higher T-stage (36.1% vs 27.0%, P=0.01), presence of metastasis (18.8% vs 12.6%, P=0.03), and shorter DSS (hazard ratio (HR) 1.4, 95% CI 1.1 to 1.9, P=0.01) in both univariate and multivariate analysis. RAD21 expression was associated with shorter DSS in patients with KRAS mutant tumours (HR:2.6, 95% CI:1.4-4.3, P=0.001) and in patients receiving adjuvant chemoradiotherapy (HR:1.9, 95% CI:1.2-3.0, P=0.008). Colorectal cancer cells with RAD21 knockdown exhibited enhanced sensitivity to 5-fluorouracil, either alone or in combination with oxaliplatin. CONCLUSIONS: RAD21 expression in CRC is associated with aggressive disease especially in KRAS mutant tumours and resistance to chemoradiotherapy. RAD21 may be an important novel therapeutic target.
  • Item
    Thumbnail Image
    Frequency of Fibroblast Growth Factor Receptor 1 gene amplification in oral tongue squamous cell carcinomas and associations with clinical features and patient outcome
    YOUNG, RICHARD ; LIM, ANNETTE ; ANGEL, CHRISTOPHER ; COLLINS, MARNIE ; DEB, SIDDHARTHA ; CORRY, JUNE ; WIESENFELD, DAVID ; KLEID, STEPHEN ; SIGSTON, ELIZABETH ; SOLOMON, BENJAMIN ; RISCHIN, DANNY ; FOX, STEPHEN ; MCARTHUR, GRANT ; WRIGHT, GAVIN ; RUSSELL, PRUDENCE ; LYONS, BERNARD ( 2013)