Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    Thumbnail Image
    Atypical ductal hyperplasia is a multipotent precursor of breast carcinoma
    Kader, T ; Hill, P ; Zethoven, M ; Goode, DL ; Elder, K ; Thio, N ; Doyle, M ; Semple, T ; Sufyan, W ; Byrne, DJ ; Pang, J-MB ; Murugasu, A ; Miligy, IM ; Green, AR ; Rakha, EA ; Fox, SB ; Mann, GB ; Campbell, IG ; Gorringe, KL (WILEY, 2019-07)
  • Item
    Thumbnail Image
    Interfacing Seurat with the R tidy universe
    Mangiola, S ; Doyle, MA ; Papenfuss, AT ; Mathelier, A (OXFORD UNIV PRESS, 2021-11-15)
    MOTIVATION: Seurat is one of the most popular software suites for the analysis of single-cell RNA sequencing data. Considering the popularity of the tidyverse ecosystem, which offers a large set of data display, query, manipulation, integration and visualization utilities, a great opportunity exists to interface the Seurat object with the tidyverse. This interface gives the large data science community of tidyverse users the possibility to operate with familiar grammar. RESULTS: To provide Seurat with a tidyverse-oriented interface without compromising efficiency, we developed tidyseurat, a lightweight adapter to the tidyverse. Tidyseurat displays cell information as a tibble abstraction, allowing intuitively interfacing Seurat with dplyr, tidyr, ggplot2 and plotly packages powering efficient data manipulation, integration and visualization. Iterative analyses on data subsets are enabled by interfacing with the popular nest-map framework. AVAILABILITY AND IMPLEMENTATION: The software is freely available at cran.r-project.org/web/packages/tidyseurat and github.com/stemangiola/tidyseurat. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
  • Item
    Thumbnail Image
    RNA-Seq Data Analysis in Galaxy
    Batut, B ; van den Beek, M ; Doyle, MA ; Soranzo, N ; Picardi, E (HUMANA PRESS INC, 2021)
    A complete RNA-Seq analysis involves the use of several different tools, with substantial software and computational requirements. The Galaxy platform simplifies the execution of such bioinformatics analyses by embedding the needed tools in its web interface, while also providing reproducibility. Here, we describe how to perform a reference-based RNA-Seq analysis using Galaxy, from data upload to visualization and functional enrichment analysis of differentially expressed genes.
  • Item
    Thumbnail Image
    A TOOLKIT FOR THE QUANTITATIVE ANALYSIS OF THE SPATIAL DISTRIBUTION OF CELLS OF THE TUMOR IMMUNE MICROENVIRONMENT
    Trigos, A ; Yang, T ; Feng, Y ; Ozcoban, V ; Doyle, M ; Pasam, A ; Kocovski, N ; Pizzolla, A ; Huang, Y-K ; Bass, G ; Keam, S ; Speed, T ; Neeson, P ; Sandhu, S ; Goode, D (BMJ PUBLISHING GROUP, 2020-11)
  • Item
    Thumbnail Image
    A simple consensus approach improves somatic mutation prediction accuracy
    Goode, DL ; Hunter, SM ; Doyle, MA ; Ma, T ; Rowley, SM ; Choong, D ; Ryland, GL ; Campbell, IG (BMC, 2013-09-30)
    Differentiating true somatic mutations from artifacts in massively parallel sequencing data is an immense challenge. To develop methods for optimal somatic mutation detection and to identify factors influencing somatic mutation prediction accuracy, we validated predictions from three somatic mutation detection algorithms, MuTect, JointSNVMix2 and SomaticSniper, by Sanger sequencing. Full consensus predictions had a validation rate of >98%, but some partial consensus predictions validated too. In cases of partial consensus, read depth and mapping quality data, along with additional prediction methods, aided in removing inaccurate predictions. Our consensus approach is fast, flexible and provides a high-confidence list of putative somatic mutations.
  • Item
    Thumbnail Image
    Preclinical screening of histone deacetylase inhibitors combined with ABT-737, rhTRAIL/MD5-1 or 5-azacytidine using syngeneic Vk*MYC multiple myeloma
    Matthews, GM ; Lefebure, M ; Doyle, MA ; Shortt, J ; Ellul, J ; Chesi, M ; Banks, K-M ; Vidacs, E ; Faulkner, D ; Atadja, P ; Bergsagel, PL ; Johnstone, RW (NATURE PUBLISHING GROUP, 2013-09)
    Multiple myeloma (MM) is an incurable malignancy with an unmet need for innovative treatment options. Histone deacetylase inhibitors (HDACi) are a new class of anticancer agent that have demonstrated activity in hematological malignancies. Here, we investigated the efficacy and safety of HDACi (vorinostat, panobinostat, romidepsin) and novel combination therapies using in vitro human MM cell lines and in vivo preclinical screening utilizing syngeneic transplanted Vk*MYC MM. HDACi were combined with ABT-737, which targets the intrinsic apoptosis pathway, recombinant human tumour necrosis factor-related apoptosis-inducing ligand (rhTRAIL/MD5-1), that activates the extrinsic apoptosis pathway or the DNA methyl transferase inhibitor 5-azacytidine. We demonstrate that in vitro cell line-based studies provide some insight into drug activity and combination therapies that synergistically kill MM cells; however, they do not always predict in vivo preclinical efficacy or toxicity. Importantly, utilizing transplanted Vk*MYC MM, we report that panobinostat and 5-azacytidine synergize to prolong the survival of tumor-bearing mice. In contrast, combined HDACi/rhTRAIL-based strategies, while efficacious, demonstrated on-target dose-limiting toxicities that precluded prolonged treatment. Taken together, our studies provide evidence that the transplanted Vk*MYC model of MM is a useful screening tool for anti-MM drugs and should aid in the prioritization of novel drug testing in the clinic.
  • Item
    Thumbnail Image
    Exome Sequencing Identifies Rare Deleterious Mutations in DNA Repair Genes FANCC and BLM as Potential Breast Cancer Susceptibility Alleles
    Thompson, ER ; Doyle, MA ; Ryland, GL ; Rowley, SM ; Choong, DYH ; Tothill, RW ; Thorne, H ; Barnes, DR ; Li, J ; Ellul, J ; Philip, GK ; Antill, YC ; James, PA ; Trainer, AH ; Mitchell, G ; Campbell, IG ; Horwitz, MS (PUBLIC LIBRARY SCIENCE, 2012-09)
    Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.
  • Item
    Thumbnail Image
    MicroRNA Genes and Their Target 3′-Untranslated Regions Are Infrequently Somatically Mutated in Ovarian Cancers
    Ryland, GL ; Bearfoot, JL ; Doyle, MA ; Boyle, SE ; Choong, DYH ; Rowley, SM ; Tothill, RW ; Gorringe, KL ; Campbell, IG ; Cooney, AJ (PUBLIC LIBRARY SCIENCE, 2012-04-20)
    MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3'-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3'-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3'-untranslated regions are thus uncommon in ovarian cancer.
  • Item
    Thumbnail Image
    Massively Parallel Sequencing and Analysis of the Necator americanus Transcriptome
    Cantacessi, C ; Mitreva, M ; Jex, AR ; Young, ND ; Campbell, BE ; Hall, RS ; Doyle, MA ; Ralph, SA ; Rabelo, EM ; Ranganathan, S ; Sternberg, PW ; Loukas, A ; Gasser, RB ; Knight, M (PUBLIC LIBRARY SCIENCE, 2010-05)
    BACKGROUND: The blood-feeding hookworm Necator americanus infects hundreds of millions of people worldwide. In order to elucidate fundamental molecular biological aspects of this hookworm, the transcriptome of the adult stage of Necator americanus was explored using next-generation sequencing and bioinformatic analyses. METHODOLOGY/PRINCIPAL FINDINGS: A total of 19,997 contigs were assembled from the sequence data; 6,771 of these contigs had known orthologues in the free-living nematode Caenorhabditis elegans, and most of them encoded proteins with WD40 repeats (10.6%), proteinase inhibitors (7.8%) or calcium-binding EF-hand proteins (6.7%). Bioinformatic analyses inferred that the C. elegans homologues are involved mainly in biological pathways linked to ribosome biogenesis (70%), oxidative phosphorylation (63%) and/or proteases (60%); most of these molecules were predicted to be involved in more than one biological pathway. Comparative analyses of the transcriptomes of N. americanus and the canine hookworm, Ancylostoma caninum, revealed qualitative and quantitative differences. For instance, proteinase inhibitors were inferred to be highly represented in the former species, whereas SCP/Tpx-1/Ag5/PR-1/Sc7 proteins ( = SCP/TAPS or Ancylostoma-secreted proteins) were predominant in the latter. In N. americanus, essential molecules were predicted using a combination of orthology mapping and functional data available for C. elegans. Further analyses allowed the prioritization of 18 predicted drug targets which did not have homologues in the human host. These candidate targets were inferred to be linked to mitochondrial (e.g., processing proteins) or amino acid metabolism (e.g., asparagine t-RNA synthetase). CONCLUSIONS: This study has provided detailed insights into the transcriptome of the adult stage of N. americanus and examines similarities and differences between this species and A. caninum. Future efforts should focus on comparative transcriptomic and proteomic investigations of the other predominant human hookworm, A. duodenale, for both fundamental and applied purposes, including the prevalidation of anti-hookworm drug targets.
  • Item
    Thumbnail Image
    Prevalence of PALB2 mutations in Australian familial breast cancer cases and controls
    Thompson, ER ; Gorringe, KL ; Rowley, SM ; Wong-Brown, MW ; McInerny, S ; Li, N ; Trainer, AH ; Devereux, L ; Doyle, MA ; Li, J ; Lupat, R ; Delatycki, MB ; Mitchell, G ; James, PA ; Scott, RJ ; Campbell, IG (BMC, 2015-08-19)
    INTRODUCTION: PALB2 is emerging as a high-penetrance breast cancer predisposition gene in the order of BRCA1 and BRCA2. However, large studies that have evaluated the full gene rather than just the most common variants in both cases and controls are required before all truncating variants can be included in familial breast cancer variant testing. METHODS: In this study we analyse almost 2000 breast cancer cases sourced from individuals referred to familial cancer clinics, thus representing typical cases presenting in clinical practice. These cases were compared to a similar number of population-based cancer-free controls. RESULTS: We identified a significant excess of truncating variants in cases (1.3 %) versus controls (0.2 %), including six novel variants (p = 0.0001; odds ratio (OR) 6.58, 95 % confidence interval (CI) 2.3-18.9). Three of the four control individuals carrying truncating variants had at least one relative with breast cancer. There was no excess of missense variants in cases overall, but the common c.1676A > G variant (rs152451) was significantly enriched in cases and may represent a low-penetrance polymorphism (p = 0.002; OR 1.24 (95 % CI 1.09-1.47). CONCLUSIONS: Our findings support truncating variants in PALB2 as high-penetrance breast cancer susceptibility alleles, and suggest that a common missense variant may also lead to a low level of increased breast cancer risk.