Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 21
  • Item
    Thumbnail Image
    A novel MYB::PAIP1 oncogenic fusion in pediatric blastic plasmacytoid dendritic cell neoplasm (BPDCN) is dependent on BCL2 expression and is sensitive to venetoclax
    Kosasih, HJ ; Healey, G ; Brennan, MS ; Bjelosevic, S ; Sadras, T ; Jalud, FB ; Ibnat, T ; Ng, AP ; Mayoh, C ; Mao, J ; Tax, G ; Ludlow, LEA ; Johnstone, RW ; Herold, MJ ; Khaw, SL ; de Bock, CE ; Ekert, PG (WILEY, 2024-02)
  • Item
    Thumbnail Image
    Advances in CAR T cell immunotherapy for paediatric brain tumours
    Rao, P ; Furst, L ; Meyran, D ; Mayoh, C ; Neeson, PJ ; Terry, R ; Khuong-Quang, D-A ; Mantamadiotis, T ; Ekert, PG (FRONTIERS MEDIA SA, 2022-11-23)
    Brain tumours are the most common solid tumour in children and the leading cause of cancer related death in children. Current treatments include surgery, chemotherapy and radiotherapy. The need for aggressive treatment means many survivors are left with permanent severe disability, physical, intellectual and social. Recent progress in immunotherapy, including genetically engineered T cells with chimeric antigen receptors (CARs) for treating cancer, may provide new avenues to improved outcomes for patients with paediatric brain cancer. In this review we discuss advances in CAR T cell immunotherapy, the major CAR T cell targets that are in clinical and pre-clinical development with a focus on paediatric brain tumours, the paediatric brain tumour microenvironment and strategies used to improve CAR T cell therapy for paediatric tumours.
  • Item
    No Preview Available
    Enhancer retargeting of CDX2 and UBTF::ATXN7L3 define a subtype of high-risk B-progenitor acute lymphoblastic leukemia
    Kimura, S ; Montefiori, L ; Iacobucci, I ; Zhao, Y ; Gao, Q ; Paietta, EM ; Haferlach, C ; Laird, AD ; Mead, PE ; Gu, Z ; Stock, W ; Litzow, M ; Rowe, JM ; Luger, SM ; Hunger, SP ; Ryland, GL ; Schmidt, B ; Ekert, PG ; Oshlack, A ; Grimmond, SM ; Rehn, J ; Breen, J ; Yeung, D ; White, DL ; Aldoss, I ; Jabbour, EJ ; Pui, C-H ; Meggendorfer, M ; Walter, W ; Kern, W ; Haferlach, T ; Brady, S ; Zhang, J ; Roberts, KG ; Blombery, P ; Mullighan, CG (AMER SOC HEMATOLOGY, 2022-06-16)
    Transcriptome sequencing has identified multiple subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL) of prognostic significance, but a minority of cases lack a known genetic driver. Here, we used integrated whole-genome (WGS) and -transcriptome sequencing (RNA-seq), enhancer mapping, and chromatin topology analysis to identify previously unrecognized genomic drivers in B-ALL. Newly diagnosed (n = 3221) and relapsed (n = 177) B-ALL cases with tumor RNA-seq were studied. WGS was performed to detect mutations, structural variants, and copy number alterations. Integrated analysis of histone 3 lysine 27 acetylation and chromatin looping was performed using HiChIP. We identified a subset of 17 newly diagnosed and 5 relapsed B-ALL cases with a distinct gene expression profile and 2 universal and unique genomic alterations resulting from aberrant recombination-activating gene activation: a focal deletion downstream of PAN3 at 13q12.2 resulting in CDX2 deregulation by the PAN3 enhancer and a focal deletion of exons 18-21 of UBTF at 17q21.31 resulting in a chimeric fusion, UBTF::ATXN7L3. A subset of cases also had rearrangement and increased expression of the PAX5 gene, which is otherwise uncommon in B-ALL. Patients were more commonly female and young adult with median age 35 (range,12-70 years). The immunophenotype was characterized by CD10 negativity and immunoglobulin M positivity. Among 16 patients with known clinical response, 9 (56.3%) had high-risk features including relapse (n = 4) or minimal residual disease >1% at the end of remission induction (n = 5). CDX2-deregulated, UBTF::ATXN7L3 rearranged (CDX2/UBTF) B-ALL is a high-risk subtype of leukemia in young adults for which novel therapeutic approaches are required.
  • Item
    No Preview Available
    TSTEM-like CAR-T cells exhibit improved persistence and tumor control compared with conventional CAR-T cells in preclinical models
    Meyran, D ; Zhu, JJ ; Butler, J ; Tantalo, D ; MacDonald, S ; Nguyen, TN ; Wang, M ; Thio, N ; D'Souza, C ; Qin, VM ; Slaney, C ; Harrison, A ; Sek, K ; Petrone, P ; Thia, K ; Giuffrida, L ; Scott, AM ; Terry, RL ; Tran, B ; Desai, J ; Prince, HM ; Harrison, SJ ; Beavis, PA ; Kershaw, MH ; Solomon, B ; Ekert, PG ; Trapani, JA ; Darcy, PK ; Neeson, PJ (AMER ASSOC ADVANCEMENT SCIENCE, 2023-04-05)
    Patients who receive chimeric antigen receptor (CAR)-T cells that are enriched in memory T cells exhibit better disease control as a result of increased expansion and persistence of the CAR-T cells. Human memory T cells include stem-like CD8+ memory T cell progenitors that can become either functional stem-like T (TSTEM) cells or dysfunctional T progenitor exhausted (TPEX) cells. To that end, we demonstrated that TSTEM cells were less abundant in infused CAR-T cell products in a phase 1 clinical trial testing Lewis Y-CAR-T cells (NCT03851146), and the infused CAR-T cells displayed poor persistence in patients. To address this issue, we developed a production protocol to generate TSTEM-like CAR-T cells enriched for expression of genes in cell replication pathways. Compared with conventional CAR-T cells, TSTEM-like CAR-T cells had enhanced proliferative capacity and increased cytokine secretion after CAR stimulation, including after chronic CAR stimulation in vitro. These responses were dependent on the presence of CD4+ T cells during TSTEM-like CAR-T cell production. Adoptive transfer of TSTEM-like CAR-T cells induced better control of established tumors and resistance to tumor rechallenge in preclinical models. These more favorable outcomes were associated with increased persistence of TSTEM-like CAR-T cells and an increased memory T cell pool. Last, TSTEM-like CAR-T cells and anti-programmed cell death protein 1 (PD-1) treatment eradicated established tumors, and this was associated with increased tumor-infiltrating CD8+CAR+ T cells producing interferon-γ. In conclusion, our CAR-T cell protocol generated TSTEM-like CAR-T cells with enhanced therapeutic efficacy, resulting in increased proliferative capacity and persistence in vivo.
  • Item
    Thumbnail Image
    SFPQ-ABL1 and BCR-ABL1 use different signaling networks to drive B-cell acute lymphoblastic leukemia
    Brown, LM ; Hediyeh-Zadeh, S ; Sadras, T ; Huckstep, H ; Sandow, JJ ; Bartolo, RC ; Kosasih, HJ ; Davidson, NM ; Schmidt, B ; Bjelosevic, S ; Johnstone, R ; Webb, A ; Khaw, SL ; Oshlack, A ; Davis, MJ ; Ekert, PG (ELSEVIER, 2022-04-12)
    Philadelphia-like (Ph-like) acute lymphoblastic leukemia (ALL) is a high-risk subtype of B-cell ALL characterized by a gene expression profile resembling Philadelphia chromosome-positive ALL (Ph+ ALL) in the absence of BCR-ABL1. Tyrosine kinase-activating fusions, some involving ABL1, are recurrent drivers of Ph-like ALL and are targetable with tyrosine kinase inhibitors (TKIs). We identified a rare instance of SFPQ-ABL1 in a child with Ph-like ALL. SFPQ-ABL1 expressed in cytokine-dependent cell lines was sufficient to transform cells and these cells were sensitive to ABL1-targeting TKIs. In contrast to BCR-ABL1, SFPQ-ABL1 localized to the nuclear compartment and was a weaker driver of cellular proliferation. Phosphoproteomics analysis showed upregulation of cell cycle, DNA replication, and spliceosome pathways, and downregulation of signal transduction pathways, including ErbB, NF-κB, vascular endothelial growth factor (VEGF), and MAPK signaling in SFPQ-ABL1-expressing cells compared with BCR-ABL1-expressing cells. SFPQ-ABL1 expression did not activate phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling and was associated with phosphorylation of G2/M cell cycle proteins. SFPQ-ABL1 was sensitive to navitoclax and S-63845 and promotes cell survival by maintaining expression of Mcl-1 and Bcl-xL. SFPQ-ABL1 has functionally distinct mechanisms by which it drives ALL, including subcellular localization, proliferative capacity, and activation of cellular pathways. These findings highlight the role that fusion partners have in mediating the function of ABL1 fusions.
  • Item
    Thumbnail Image
    In vitro and in vivo drug screens of tumor cells identify novel therapies for high-risk child cancer
    Lau, LMS ; Mayoh, C ; Xie, J ; Barahona, P ; MacKenzie, KL ; Wong, M ; Kamili, A ; Tsoli, M ; Failes, TW ; Kumar, A ; Mould, EVA ; Gifford, A ; Chow, S-O ; Pinese, M ; Fletcher, J ; Arndt, GM ; Khuong-Quang, D-A ; Wadham, C ; Eden, G ; Trebilcock, P ; Joshi, S ; Alfred, S ; Gopalakrishnan, A ; Khan, A ; Wade, DG ; Strong, PA ; Manouvrier, E ; Morgan, LT ; Cadiz, R ; Ung, C ; Thomas, DM ; Tucker, KM ; Warby, M ; McCowage, GB ; Dalla-Pozza, L ; Byrne, JA ; Saletta, F ; Fellowes, A ; Fox, SB ; Norris, MD ; Tyrrell, V ; Trahair, TN ; Lock, RB ; Cowley, MJ ; Ekert, PG ; Haber, M ; Ziegler, DS ; Marshall, GM (WILEY, 2022-04-07)
    Biomarkers which better match anticancer drugs with cancer driver genes hold the promise of improved clinical responses and cure rates. We developed a precision medicine platform of rapid high-throughput drug screening (HTS) and patient-derived xenografting (PDX) of primary tumor tissue, and evaluated its potential for treatment identification among 56 consecutively enrolled high-risk pediatric cancer patients, compared with conventional molecular genomics and transcriptomics. Drug hits were seen in the majority of HTS and PDX screens, which identified therapeutic options for 10 patients for whom no targetable molecular lesions could be found. Screens also provided orthogonal proof of drug efficacy suggested by molecular analyses and negative results for some molecular findings. We identified treatment options across the whole testing platform for 70% of patients. Only molecular therapeutic recommendations were provided to treating oncologists and led to a change in therapy in 53% of patients, of whom 29% had clinical benefit. These data indicate that in vitro and in vivo drug screening of tumor cells could increase therapeutic options and improve clinical outcomes for high-risk pediatric cancer patients.
  • Item
    Thumbnail Image
    JAFFAL: detecting fusion genes with long-read transcriptome sequencing
    Davidson, NM ; Chen, Y ; Sadras, T ; Ryland, GL ; Blombery, P ; Ekert, PG ; Goke, J ; Oshlack, A (BMC, 2022-01-06)
    In cancer, fusions are important diagnostic markers and targets for therapy. Long-read transcriptome sequencing allows the discovery of fusions with their full-length isoform structure. However, due to higher sequencing error rates, fusion finding algorithms designed for short reads do not work. Here we present JAFFAL, to identify fusions from long-read transcriptome sequencing. We validate JAFFAL using simulations, cell lines, and patient data from Nanopore and PacBio. We apply JAFFAL to single-cell data and find fusions spanning three genes demonstrating transcripts detected from complex rearrangements. JAFFAL is available at https://github.com/Oshlack/JAFFA/wiki .
  • Item
    Thumbnail Image
    Chimeric Antigen Receptor T cell Therapy and the Immunosuppressive Tumor Microenvironment in Pediatric Sarcoma
    Terry, RL ; Meyran, D ; Fleuren, EDG ; Mayoh, C ; Zhu, J ; Omer, N ; Ziegler, DS ; Haber, M ; Darcy, PK ; Trapani, JA ; Neeson, PJ ; Ekert, PG (MDPI, 2021-09)
    Sarcomas are a diverse group of bone and soft tissue tumors that account for over 10% of childhood cancers. Outcomes are particularly poor for children with refractory, relapsed, or metastatic disease. Chimeric antigen receptor T (CAR T) cells are an exciting form of adoptive cell therapy that potentially offers new hope for these children. In early trials, promising outcomes have been achieved in some pediatric patients with sarcoma. However, many children do not derive benefit despite significant expression of the targeted tumor antigen. The success of CAR T cell therapy in sarcomas and other solid tumors is limited by the immunosuppressive tumor microenvironment (TME). In this review, we provide an update of the CAR T cell therapies that are currently being tested in pediatric sarcoma clinical trials, including those targeting tumors that express HER2, NY-ESO, GD2, EGFR, GPC3, B7-H3, and MAGE-A4. We also outline promising new CAR T cells that are in pre-clinical development. Finally, we discuss strategies that are being used to overcome tumor-mediated immunosuppression in solid tumors; these strategies have the potential to improve clinical outcomes of CAR T cell therapy for children with sarcoma.
  • Item
    Thumbnail Image
    Enhancing the Potential of Immunotherapy in Paediatric Sarcomas: Breaking the Immunosuppressive Barrier with Receptor Tyrosine Kinase Inhibitors
    Fleuren, EDG ; Terry, RL ; Meyran, D ; Omer, N ; Trapani, JA ; Haber, M ; Neeson, PJ ; Ekert, PG (MDPI, 2021-12)
    Despite aggressive surgery, chemotherapy, and radiotherapy, survival of children and adolescents and young adults (AYAs) with sarcoma has not improved significantly in the past four decades. Immune checkpoint inhibitors (ICIs) are an exciting type of immunotherapy that offer new opportunities for the treatment of paediatric and AYA sarcomas. However, to date, most children do not derive a benefit from this type of treatment as a monotherapy. The immunosuppressive tumour microenvironment is a major barrier limiting their efficacy. Combinations of ICIs, such as anti-PD-1 therapy, with targeted molecular therapies that have immunomodulatory properties may be the key to breaking through immunosuppressive barriers and improving patient outcomes. Preclinical studies have indicated that several receptor tyrosine kinase inhibitors (RTKi) can alter the tumour microenvironment and boost the efficacy of anti-PD-1 therapy. A number of these combinations have entered phase-1/2 clinical trials, mostly in adults, and in most instances have shown efficacy with manageable side-effects. In this review, we discuss the status of ICI therapy in paediatric and AYA sarcomas and the rationale for co-treatment with RTKis. We highlight new opportunities for the integration of ICI therapy with RTK inhibitors, to improve outcomes for children with sarcoma.
  • Item
    No Preview Available
    The unexplored immune landscape of high-risk pediatric cancers.
    Mayoh, C ; Terry, RL ; Wong, M ; Lau, LM ; Khuong-Quang, DA ; Mateos, MK ; Tyrrell, V ; Haber, M ; Ziegler, DS ; Cowley, MJ ; Trapani, JA ; Neeson, PJ ; Ekert, PG (AMER ASSOC CANCER RESEARCH, 2021-07)
    Abstract In adult cancer, immune signatures such as the T cell-inflamed gene expression profile (GEP) have been developed to predict which patients are likely to respond to immune checkpoint inhibitors (ICIs) beyond high tumor mutation burden (TMB) and PD-L1 expression. The GEP infers T cell infiltration and activation in the tumor microenvironment (TME) from transcriptomic data. However, it is not known whether tools such as GEP are applicable in pediatric cancer, as the TME in childhood cancers is largely unexplored and response to ICIs are rare. We have undertaken an integrated analysis of the pediatric TME using RNA-sequencing (RNA-seq) and immunohistochemistry (IHC). Our goal is to identify patients with T cell-inflamed or “hot” tumors who may benefit from ICIs. Through Australia's ZERO childhood cancer precision medicine program we performed RNA-seq on 347 high-risk pediatric cancers (estimated <30% chance of survival) and performed IHC for CD4, CD8, CD45 and PD-L1 on 112 matching samples. Using both informatic assessments and IHC as independent measures of immune infiltration, we mapped the immune landscape of the TME across a broad range of high-risk pediatric cancers. As RNA-seq is increasingly used in the analysis of patient tumors, we investigated numerous molecular correlates of immune infiltration, tailored specifically to pediatric patients. RNA-seq was used to generate the GEP and map expression profiles of immune checkpoint genes, and deconvolution algorithms were used to extract the immune cell composition for every tumor. The correlation analysis between IHC, deconvolution of cell mixture composition and GEP were assessed, including PD-L1 protein and mRNA expression. We observed significant correlation between PD-L1 protein and mRNA expression and a weak correlation of CD8+ T cells with GEP. Deconvoluted TME estimates were most tightly correlated with the presence of T cell infiltrates (CD4 and CD8) with IHC. TMB and tumor purity estimates were derived from whole genome sequencing for each case. No correlation was observed between TMB and immune infiltration, however, tumor purity was negatively correlated with immune infiltration. Using IHC as an independent marker of a T cell-inflamed TME, we have identified a novel pediatric immune signature that includes markers of CD4 and CD8 T cells, T cell cytotoxicity, T and NK cell recruitment and activation, MHC Class II molecules and immune checkpoints. This is the first study to comprehensively analyze the pediatric TME in a cohort of this size and diversity, with matching IHC for orthogonal validation. Through the combination of RNA-seq and IHC, we have devised a novel immune signature specific to pediatrics and these techniques have identified a subset of patients that are immune “hot” and may potentially respond to ICIs. Conversely, we also highlight the potential of identifying immune “cold” patients who may need immunomodulatory combination strategies to maximize immune response. Citation Format: Chelsea Mayoh, Rachael L. Terry, Marie Wong, Loretta M. Lau, Dong Anh Khuong-Quang, Marion K. Mateos, Vanessa Tyrrell, Michelle Haber, David S. Ziegler, Mark J. Cowley, Joseph A. Trapani, Paul J. Neeson, Paul G. Ekert. The unexplored immune landscape of high-risk pediatric cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 3044.