Sir Peter MacCallum Department of Oncology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Modelling aggressive prostate cancers of young men in immune-competent mice, driven by isogenic Trp53 alterations and Pten loss
    Mejia-Hernandez, JO ; Keam, SP ; Saleh, R ; Muntz, F ; Fox, SB ; Byrne, D ; Kogan, A ; Pang, L ; Huynh, J ; Litchfield, C ; Caramia, F ; Lozano, G ; He, H ; You, JM ; Sandhu, S ; Williams, SG ; Haupt, Y ; Haupt, S (SPRINGERNATURE, 2022-09-08)
    Understanding prostate cancer onset and progression in order to rationally treat this disease has been critically limited by a dire lack of relevant pre-clinical animal models. We have generated a set of genetically engineered mice that mimic human prostate cancer, initiated from the gland epithelia. We chose driver gene mutations that are specifically relevant to cancers of young men, where aggressive disease poses accentuated survival risks. An outstanding advantage of our models are their intact repertoires of immune cells. These mice provide invaluable insight into the importance of immune responses in prostate cancer and offer scope for studying treatments, including immunotherapies. Our prostate cancer models strongly support the role of tumour suppressor p53 in functioning to critically restrain the emergence of cancer pathways that drive cell cycle progression; alter metabolism and vasculature to fuel tumour growth; and mediate epithelial to mesenchymal-transition, as vital to invasion. Importantly, we also discovered that the type of p53 alteration dictates the specific immune cell profiles most significantly disrupted, in a temporal manner, with ramifications for disease progression. These new orthotopic mouse models demonstrate that each of the isogenic hotspot p53 amino acid mutations studied (R172H and R245W, the mouse equivalents of human R175H and R248W respectively), drive unique cellular changes affecting pathways of proliferation and immunity. Our findings support the hypothesis that individual p53 mutations confer their own particular oncogenic gain of function in prostate cancer.
  • Item
    Thumbnail Image
    Targeting MDM4 as a Novel Therapeutic Approach in Prostate Cancer Independent of p53 Status
    Mejia-Hernandez, JO ; Raghu, D ; Caramia, F ; Clemons, N ; Fujihara, K ; Riseborough, T ; Teunisse, A ; Jochemsen, AG ; Abrahmsen, L ; Blandino, G ; Russo, A ; Gamell, C ; Fox, SB ; Mitchell, C ; Takano, EA ; Byrne, D ; Miranda, PJ ; Saleh, R ; Thorne, H ; Sandhu, S ; Williams, SG ; Keam, SP ; Haupt, Y ; Haupt, S (MDPI, 2022-08)
    Metastatic prostate cancer is a lethal disease in patients incapable of responding to therapeutic interventions. Invasive prostate cancer spread is caused by failure of the normal anti-cancer defense systems that are controlled by the tumour suppressor protein, p53. Upon mutation, p53 malfunctions. Therapeutic strategies to directly re-empower the growth-restrictive capacities of p53 in cancers have largely been unsuccessful, frequently because of a failure to discriminate responses in diseased and healthy tissues. Our studies sought alternative prostate cancer drivers, intending to uncover new treatment targets. We discovered the oncogenic potency of MDM4 in prostate cancer cells, both in the presence and absence of p53 and also its mutation. We uncovered that sustained depletion of MDM4 is growth inhibitory in prostate cancer cells, involving either apoptosis or senescence, depending on the cell and genetic context. We identified that the potency of MDM4 targeting could be potentiated in prostate cancers with mutant p53 through the addition of a first-in-class small molecule drug that was selected as a p53 reactivator and has the capacity to elevate oxidative stress in cancer cells to drive their death.